
Acquiring Useful Transitions in Online Relational

Model-Based Reinforcement Learning

by

Annie Feng

S.B. Electrical Engineering and Computer Science, Massachusetts Institute of Technology

(2023)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2025

© 2025 Annie Feng. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an

open-access license.

Authored by: Annie Feng

Department of Electrical Engineering and Computer Science

December 3, 2024

Certified by: Tomás Lozano-Pérez

Professor of Electrical Engineering and Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Acquiring Useful Transitions in Online Relational Model-Based

Reinforcement Learning

by

Annie Feng

Submitted to the Department of Electrical Engineering and Computer Science

on December 3, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE

ABSTRACT

Reinforcement learning in environments with large state and action spaces and sparse

rewards demands sophisticated exploration strategies. This thesis introduces a practical

exploration method for model-based relational reinforcement learning designed for large-

scale relational domains with sparse rewards. Inspired by goal-literal babbling, our approach

utilizes teacher-provided subgoals and demonstrations to guide exploration. We evaluate the

method in the Baking-Large domain, which features vast state and action spaces and a

challenging narrow-passage problem. Furthermore, we investigate the potential of Large

Language Models to assist exploration in this domain and simpler ones, highlighting their

capabilities and limitations.

Thesis supervisor: Tomás Lozano-Pérez

Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I would like to express my sincere gratitude to Tomas and Leslie for granting me this in-

credible opportunity. Their kindness, invaluable wisdom, and insightful guidance have been

instrumental in shaping my journey. I am deeply thankful to Nishanth, my mentor and

collaborator, for his invaluable guidance in refining the research direction and for the many

thought-provoking and productive discussions that enriched this work. Finally, I extend my

deepest appreciation to my mom, my dad, and my brother, whose unwavering encouragement

and support have been the foundation of all my endeavors.

5



6



Contents

List of Figures 11

List of Tables 13

1 Introduction 15

2 Problem Setting 17

2.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Model: PDDL Operators With Actions . . . . . . . . . . . . . . . . . . . . . 19

2.4 PDDLGym Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Our Large-Scale Domain: Baking-Large . . . . . . . . . . . . . . . . . . . . . 20

3 Related Work 21

4 Insights From Goal-Literal Babbling Exploration 23

4.1 How GLIB Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 GLIB Relies on Random Actions . . . . . . . . . . . . . . . . . . . . 23

4.2 GLIB’s Reliance on Random Actions Inspired Demonstrations . . . . . . . . 24

4.3 GLIB’s Failed Plan Executions Inspired Precondition Targeting . . . . . . . 24

4.4 GLIB’s Goal Sampling Inspired Curricula in Our Algorithm . . . . . . . . . 26

4.5 Why GLIB Is Effective: Working Hypotheses . . . . . . . . . . . . . . . . . . 27

4.5.1 What Are Useful Transitions to Collect for Learning? . . . . . . . . . 27

5 Our Algorithm For Exploration in Relational Domains 29

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7



5.2 Initialization: Lines 2-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Training Loop: Lines 10-44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.1 Automatic Action Selection . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.2 Detecting When to Request the Teacher to Intervene . . . . . . . . . 37

5.3.3 Updating the Learned Model . . . . . . . . . . . . . . . . . . . . . . 38

5.4 How to Select Curricula and Demonstrations . . . . . . . . . . . . . . . . . . 38

5.4.1 Selecting curriculum to correct weak preconditions . . . . . . . . . . . 39

5.4.2 Selecting demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Results 45

6.1 Exploration Methods Evaluated . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Results on Long-Horizon Test Planning Problems . . . . . . . . . . . . . . . 46

6.2.1 Analysis of Baseline Method Failures . . . . . . . . . . . . . . . . . . 46

6.3 Data Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Future Work 49

7.1 Integrating GLIB With Operators From GPT-4 . . . . . . . . . . . . . . . . 49

7.2 Planning Open-Loop with GPT-4 . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3 Takeaways and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusion 55

A Domains 57

A.1 Baking-Small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1.3 Largest Set of Objects in a Problem . . . . . . . . . . . . . . . . . . . 62

A.2 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2.3 Largest Set of Objects in a Problem . . . . . . . . . . . . . . . . . . . 65

8



A.3 Doors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3.3 Largest Set of Objects in a Problem . . . . . . . . . . . . . . . . . . . 67

A.4 Minecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4.3 Largest Set of Objects in a Problem . . . . . . . . . . . . . . . . . . . 73

A.5 Baking-Large . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.5.3 Largest Set of Objects in a Problem . . . . . . . . . . . . . . . . . . . 90

B Prompt Templates 93

B.1 Prompt Templates for Generating Operators . . . . . . . . . . . . . . . . . . 93

B.1.1 Few-Shot Chain-of-Thought Prompt Template . . . . . . . . . . . . . 95

B.2 Predicate Descriptions for Baking-Large . . . . . . . . . . . . . . . . . . . . 104

B.2.1 Grounded Literal Descriptions . . . . . . . . . . . . . . . . . . . . . . 104

B.2.2 Action Predicate Descriptions . . . . . . . . . . . . . . . . . . . . . . 108

B.2.3 Lifted Action Literal Variable Descriptions . . . . . . . . . . . . . . . 109

B.2.4 Goal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.3 Prompt Templates for Generating Plan Sketches Open-Loop in Baking-Large 113

B.4 Prompt Templates for Grounding Plans . . . . . . . . . . . . . . . . . . . . . 116

References 119

9



10



List of Figures

4.1 In "GLIB_G1 with demos" and "GLIB_L2 with demos", the first 61 actions

are demonstrations from a teacher. From these demonstrations, initial oper-

ators for every action predicate are learned and used for planning in GLIB1.

GLIB with demonstrations uses fewer environment interactions to solve the

same tasks and solves harder tasks than GLIB without demonstrations. . . . 25

4.2 Success rate vs. number of environment interactions with failed actions in

plans marked with a green dot. This plot shows the performance of GLIB on

the toy Baking domain in PDDLGym. Notice that out of all the points where

success rate increases, more often than not, green dots are located at those

points. This shows that an increase in the success rate is often directly caused

by a model update after a plan executes unexpectedly because of incorrect

preconditions in the executed operator. . . . . . . . . . . . . . . . . . . . . . 26

6.1 Success rates on unseen long-horizon planning problems as training progresses.

None of the baseline methods—GLIB-G1, GLIB-L2, or random actions—solve

any test tasks within 2,000 interactions. Our method successfully solves all

test tasks using fewer than 834 interactions. . . . . . . . . . . . . . . . . . . 47

6.2 Success rates on 12 short-horizon tasks (solvable in three or fewer actions) with

goals reachable in the training episodes. Our method demonstrates superior

data efficiency compared to both GLIB variants and random action selection. 48

11



7.1 Success rate curves comparing vanilla GLIB to GLIB initialized with LLM-

generated operators. In domains where the LLM generates almost all ground

truth operators accurately (Minecraft and Blocks), learning is significantly

accelerated. However, in the Baking and Doors domains, the LLM gener-

ates fewer correct operators or none at all, leading to fewer useful transitions

collected (Baking) or even distraction from better action selection (Doors). 51

7.2 ChatGPT’s proposed action sequence to bake a cake in Baking-Large. In this

example shown, the proposed sequence of action predicate names can form a

valid plan to solve the goal. However, the groundings of the predicates in the

later responses (not shown) make the plan fail. . . . . . . . . . . . . . . . . . 53

12



List of Tables

2.1 Domain size comparison by number of predicates, number of operators, and

maximum number of objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

13



14



Chapter 1

Introduction

Learning the transition model is fundamental in model-based reinforcement learning. In this

approach, an agent interacts with its environment to learn an approximate model of the

environment’s dynamics. This learned model can then given as input to a planner to achieve

a goal.

In complex environments with large state and action spaces, learning effective models for

planning is challenging. For instance, consider a robot navigating an unfamiliar environment

or an autonomous AI agent attempting a new task on the web. In both scenarios, efficiently

exploring to learn a useful model for planning to complete tasks requires directed trial-and-

error in small subspaces of the state space. Relational transition models, which define lifted

relations between objects, offer a promising solution. By design, these models generalize to

new problems with different objects and compactly represent large-scale domains, enabling

the handling of environments with numerous objects. Following on prior work (Chitnis,

Silver et al., 2020; Lang, Toussaint, and Kersting, 2012), we adopt noisy deictic rules [13]

as the transition model representation in relational model-based reinforcement learning.

This thesis proposes a new exploration algorithm for relational model learning, inspired

by experiments with the goal-literal babbling (GLIB) algorithm [6]. Originally designed for

small, simple domains where effective actions can be discovered through near-exhaustive

enumeration, GLIB struggles in larger, more complex environments. To demonstrate this

limitation, we introduce a new domain, Baking-Large, with over 21600 grounded states and

over 2700 grounded actions. Baking-Large also features a narrow-passage problem, requir-

15



ing a long sequence of specific actions to access critical parts of the state space. In our

experiments, we show that our method is much more effective than GLIB on this domain.

Our method combines planning and teacher guidance to direct exploration, drawing in-

spiration from goal-literal babbling (GLIB) [6]. Like GLIB, our approach alternates between

planning and another mode—teacher guidance in our case. We plan to the agent’s learned

operators’ preconditions, and unlike GLIB, which defaults to random actions when no plans

are found, our method requests teacher-provided demonstrations or subgoals. Furthermore,

instead of planning to uniformly sampled random goals, our method alternates between

planning to teacher-defined subgoals and learned preconditions.

We also explore the potential of Large Language Models (LLMs) for efficient exploration

in relational domains, examining how they can propose symbolic operators for goal-literal

babbling and generate plans to provide demonstrations that accelerate model learning. These

experiments, conducted in Baking-Large and simpler environments from PDDLGym [34],

highlight promising directions for future research.

The rest of the thesis is organized as follows. First, we describe our problem setting

and introduce the domains used in our experiments. Next, we discuss related work. We

then present our insights into GLIB that led to our algorithm. Following this, we detail

our algorithm and the teacher’s role, illustrating with examples from Baking-Large. We

then present the results of our algorithm on Baking-Large. For future work, we explore

initial experiments with Large Language Models, highlighting their potential for gathering

demonstrations. Finally, we conclude with a summary and suggestions for future research.

16



Chapter 2

Problem Setting

Our problem setting features discrete states and discrete actions. It is online, object-oriented,

deterministic, goal-based, and fully observable. In this section, we formally define the en-

vironments and tasks, followed by an introduction to the domains used in our experiments,

including our own Baking-Large environment.

2.1 Environments

An environment is defined as ⟨S,A, I, T, P,O,P ,Q⟩.

As in a typical RL environment, S is the state space, A is the action space, I is the initial

state distribution, T is the maximum episode length as the maximum number of actions,

and P (s′|s, a) is the deterministic transition model where s, s′ ∈ S and a ∈ A. The agent

does not know the transition model, but it does know S and A. As it takes actions in the

environment, the agent perfectly observes states sampled from the transition model P . The

agent interacts with the environment episodically.

O is the finite set of objects for the environment. Between episodes, the set of objects

o ⊂ O may differ, but within each episode, o is fixed. Each object has a semantically

meaningful name, such as "pan-0".

The state space S is relational with respect to a known, finite set of predicates P , and the

action space A is relational with respect to a known, finite set of predicates Q. Predicates

are Boolean-valued functions. A predicate applied to objects or variables is a ground literal

17



or lifted literal, respectively. Under the closed world assumption, each state s ∈ S is a

conjunction of positive ground literals constructed from the predicates in P . Each action

a ∈ A is a ground literal constructed from a predicate inQ. Each predicate has a semantically

meaningful name, such as "is-raw-egg-yolk".

An environment is associated with a set of tasks that the agent sees at training time,

and a set of tasks that the agent sees at testing time. The test tasks are generally harder

than the train tasks, containing more objects and requiring longer horizon plans to achieve

goals. In the Baking-Large domain, none of the test tasks’ goals can be achieved within the

training episodes.

2.2 Tasks

A task is specified as ⟨s0, o, g⟩, where s0 ∈ S is the initial state, o ⊂ O is the set of objects

that stays constant throughout the episode, and g ∈ S is the goal state.

During training, the agent attempts training tasks episodically. An episode begins in

state s0, and the agent takes a sequence of actions a0, a1, ...an ∈ A until a termination

condition is satisfied: the agent either reaches the goal state g or the episode ends after the

T th action. Unless we specify otherwise, the next episode is randomly sampled from the

training tasks and begins. In our experiments, we stop training once a maximum number of

actions have been taken or when the agent achieves 100% on the test tasks.

As the agent explores and learns, we periodically evaluate the learned model on test

tasks. For each test task, if the model generates a plan based on the training episodes, we

execute it open-loop and consider it successful if the goal is achieved. We use test tasks to

report the effectiveness of our methods, but in an application, the agent could do without

periodic evaluation and just keep exploring and improving the learned model.

18



2.3 Model: PDDL Operators With Actions

The model that the agent learns is a set of PDDL operators with actions1. Each PDDL

operator is associated with a lifted action literal defined as an action predicate applied to

a subset of the operator’s parameters. Our operators’ preconditions are conjunctions at the

top level. For each operator, we append the lifted action literal to the overall conjunction in

the preconditions of the operator.

We define ground truth operators, which the agent does not have access to, for each

environment. Executing the action literal in the environment causes deterministic effects

defined by the ground truth operator whose preconditions are satisfied. If no ground truth

operator has its preconditions satisfied, then the executed action doesn’t change the state of

the environment.

2.4 PDDLGym Environments

We use four existing domains from PDDLGym[34] in our experiments with Large Language

Models: Baking (which we call Baking-Small), Minecraft, Blocks, and Doors. These domains

are relatively small-scale compared to Baking-Large. The operators, predicates, and objects

for these domains are detailed in Appendix A.

Baking-Small presents a simplified version of the narrow-passage problem. Here, the

agent bakes cakes and souffles, requiring specific, sequential actions like adding ingredients

to a pan, mixing them, putting the pan in the oven, and starting the oven. Requiring a

precise and long sequence of actions makes random action selection not as effective in this

domain as in the Blocks, Minecraft, and Doors domains.

Baking-Large scales up this challenge significantly, introducing more ingredients and

additional steps for baking cakes and souffles. The extended narrow-passage amplifies the

difficulty posed in Baking-Small.
1We use PDDL 1.2. Our requirements are typing and disjunctive preconditions.

19



2.5 Our Large-Scale Domain: Baking-Large

We designed a domain called Baking-Large for our experiments, where the agent bakes cakes

and souffles and serves them on plates. To bake a cake, the agent must preheat the oven

with the appropriate cake settings, mix five ingredients in a bowl, transfer the mixture to

a pan, place the pan in the oven, and start the oven with cake-baking settings. To bake a

souffle, the agent must preheat the oven with souffle settings, crack and separate eggs, mix

several ingredients in a bowl, beat egg whites, fold them into the mixture, pour the mixture

into a pan, place the pan in the oven, and start the oven with souffle-baking settings.

We list the operators, predicates, and objects for this domain in Appendix A. A compar-

ison of the scale of Baking-Large with other domains is provided in Table 2.1. To further

demonstrate the scale of this domain, consider the following:

1. The largest operator has 21 literals in the precondition and 25 literals in the effects.

2. Each task has 30-40 objects.

3. The minimum length of plans that solve test tasks range from 24 to 28 actions.

Domain Name State Predicates Action Predicates Operators Objects
Blocks 6 4 4 7

Baking-Small 14 8 8 11
Minecraft 9 5 5 35

Doors 5 2 2 93
Baking-Large (ours) 50 18 22 41

Table 2.1: Domain size comparison by number of predicates, number of operators, and
maximum number of objects.

20



Chapter 3

Related Work

Our work is related to several existing lines of work in the literature.

Exploration in Reinforcement Learning (RL). Efficient exploration of state spaces

to enable rapid learning is a core challenge in RL [2, 19]. Various exploration strategies

have been developed to improve learning efficiency [5, 8, 15, 24, 29, 33, 38]. Of these, our

work is most related to the model-based approaches [24, 33, 38], which attempt to learn

a transition model during exploration, which is then used for planning tasks at test time.

Our work differs by addressing the relational setting, where state spaces are represented

as relationships among objects so that symbolic planners can be used to plan with a given

transition model.

Exploration in relational domains. Recent work has investigated exploration in rela-

tional domains that support efficient symbolic planning [6, 18, 20, 21, 26, 31, 32]. Among

these, our work builds on GLIB [6], which explores relational domains by randomly sampling

possible goals and attempting to plan to achieve them. However, GLIB and most similar

works primarily focus on small-scale domains with limited predicates and objects. By con-

trast, we are interested in large scale domains, where the space of possible goals that could

be sampled is extremely large. We empirically evaluate GLIB’s performance in such settings

and focus on developing a new exploration approach to handle these challenges effectively.

We explore the potential of Large Language Models (LLMs) [28] to enhance exploration

in relational domains. Several recent works have studied using LLMs for exploration in non-

relational domains [10, 22, 27]. Another line of work has studied using LLMs for planning

21



directly [14, 37, 39] and discovered that symbolic planners generally outperform LLMs at

planning tasks. Consequently, we use LLMs to aid exploration rather than perform direct

planning to achieve goals. Similar to Wong et. al. [41], we investigated using an LLM to

propose symbolic operators; however, we use the operators only for exploration and learn

operators from data for evaluation, while [41] evaluates and discards operators proposed by

the LLM.

We also investigate leveraging a small set of human demonstrations to enable more effi-

cient exploration. This idea has been explored previously in the context of deep reinforcement

learning [25, 30, 40]. In relational reinforcement learning, using human demonstrations to aid

exploration has been proposed for model-free methods [9] and for model-based methods [23].

Our work has similarities with Martinez et. al. [23]: we ask for teacher demonstrations

and/or subgoals when planning fails. However, while Martinez’s method builds on REX,

ours is inspired by GLIB and addresses the larger and more complex Baking-Large domain.

Learning to plan. Recent years have seen significant interest in learning models from

data to enable effective planning [1, 4, 7, 12, 16, 17, 35, 36, 41]. Several previous works

attempt to learn symbolic predicates, operators, and other planning components for long-

horizon tasks [12, 16, 35]. Many of these works take place entirely in the offline setting,

where only demonstrations are provided [4, 17, 35]. The works that operate in the online

setting generally do not focus on exploration challenges and rely on naive strategies for

exploration [12, 16]. Our work is most related to approaches that assume given predicates

and focus on learning symbolic operators [3, 13, 17, 41]. We adopt the symbolic operator-

learning algorithm from [13] (though other operator-learning algorithms could certainly be

used here instead) and focus on collecting transition data online so that useful operators can

be learned with as little data as possible.

22



Chapter 4

Insights From Goal-Literal Babbling

Exploration

Our method was inspired by our empirical study of goal-literal babbling exploration (GLIB)

[6]. In this section, we present our insights that motivated our algorithm.

4.1 How GLIB Works

GLIB is an exploration strategy for relational domains that uses planning to guide explo-

ration [6]. To select an action, the agent uniformly samples a goal from the unvisited state

space and attempts to find a plan under the learned model. If a plan is found, GLIB executes

it until it completes or fails. If no plan is found after N attempts at sampling and planning

(where N is a hyperparameter), GLIB defaults to randomly selecting an action from the

action space.

4.1.1 GLIB Relies on Random Actions

GLIB’s strategy is a mixture of selecting random actions and planning to randomly-selected,

unvisited goal states. At the beginning of online learning, there are no operators, so GLIB

relies on random actions to get a nontrivial transition upon which to learn a first operator,

which can then be used for planning. However, even after the first operators are learned, it’s

23



possible that many plans can’t be made with those operators alone, which often happens in

complex domains such as Baking-Large. As a result, GLIB will continue relying on random

actions to find other nontrivial transitions.

In large domains, random actions have a very low probability of succeeding. We created

Baking-Large to feature numerous action predicates, high predicate arities, many objects,

and complex preconditions. Our experiments in Baking-Large confirmed that GLIB and

random action selection perform poorly in such environments. Unlike GLIB, our method

avoids relying on random actions entirely.

4.2 GLIB’s Reliance on Random Actions Inspired Demon-

strations

Unlike GLIB, which relies on random actions to learn initial operators, our method lever-

ages teacher-provided demonstrations. This approach was motivated by an experiment to

confirm our hypothesis that providing GLIB with transitions with unseen effects as initial

demonstrations would accelerate operator learning. As shown in Figure 4.1, this hypothesis

was validated in our Baking-Large domain. The same trend was observed in the follow-

ing small-scale domains in PDDLGym: Blocks, Doors, Easygripper, Minecraft, Travel, and

Baking [34].

4.3 GLIB’s Failed Plan Executions Inspired Precondition

Targeting

We hypothesized that the following event is a catalyst for model learning. We observed the

following pattern in GLIB: first the agent makes a plan to a randomly-selected goal, then it

executes an operator with incorrect preconditions, then the agent observes a transition with

unexpected effects, and finally the agent calls the model learner to update the incorrectly
1In our experiments using demonstrations, when sampling goals in GLIB, we do not rule out goals visited

during the demonstrations unless they were achieved after the demonstrations.

24



(a) GLIB with initial demonstrations vs.
vanilla GLIB on the long-horizon test tasks
in Baking-Large.

(b) GLIB with initial demonstrations vs.
vanilla GLIB on short-horizon training tasks
in Baking-Large.

Figure 4.1: In "GLIB_G1 with demos" and "GLIB_L2 with demos", the first 61 actions
are demonstrations from a teacher. From these demonstrations, initial operators for every
action predicate are learned and used for planning in GLIB1. GLIB with demonstrations uses
fewer environment interactions to solve the same tasks and solves harder tasks than GLIB
without demonstrations.

learned operator. This model change then increases the success rate. We marked the obser-

vation of this pattern using green dots on success rate curves such as in Figure 4.2. Across

many domains, we observed that this event often coincidences at iterations where the success

rate increases. Inspired by this observation, we wanted our method to observe transitions

that reveal incorrect preconditions as much as possible.

In our method, we plan to the preconditions of a learned operator before executing the

operator. In this way, we purposefully cause the observed pattern. This is unlike GLIB,

which relies on chance to sample goals that involve an operator with incorrect preconditions

in the plan.

25



Figure 4.2: Success rate vs. number of environment interactions with failed actions in plans
marked with a green dot. This plot shows the performance of GLIB on the toy Baking
domain in PDDLGym. Notice that out of all the points where success rate increases, more
often than not, green dots are located at those points. This shows that an increase in the
success rate is often directly caused by a model update after a plan executes unexpectedly
because of incorrect preconditions in the executed operator.

4.4 GLIB’s Goal Sampling Inspired Curricula in Our Al-

gorithm

The toy Baking domain presents a narrow passage problem: interesting parts of the state

space can only be accessed after executing a lengthy sequence of prerequisite actions. We

observed that GLIB addresses this challenge by serendipitously sampling a specific sequence

of goals, achieving them one by one to get across the narrow passage, and then executing a

random action in the newly accessible state space that enhances the model. Similarly, our

method prescribes curricula—sequences of subgoals—for the agent to accomplish. Instead

26



of relying on random actions, a teacher reasons about the situation and provides demonstra-

tions.

4.5 Why GLIB Is Effective: Working Hypotheses

4.5.1 What Are Useful Transitions to Collect for Learning?

We identify two types of useful transitions that an exploration strategy collects:

1. A transition that shows a counterexample to a learned operator’s preconditions.

2. A transition with a previously unseen set of effects.

GLIB collects the first type of transitions by executing plans that fail and the second

type primarily through random actions. Early in training, when no operators have been

learned, random actions are used to obtain the second type of transitions. Once some

operators are learned, plans can be made using those operators, and executing a random

action immediately after achieving a goal can help uncover the second type of transitions,

particularly those within narrow passages. The second type of transitions could also be

collected when a mistake in a plan leads to discovering new effects, allowing the definition

of a new operator. However, in almost all of our observations, failed actions in a plan did

not produce any effects in our simulation.

When a plan fails, the agent improves the model because the observed effects are different

than the effects that the operator in the plan describes. In these cases, the preconditions of

the operator were wrong, and collecting the transition with unexpected effects informs the

operator learning algorithm to update the failed operator’s preconditions2.

We believe GLIB is more effective than random primarily because it collects failed plan

executions that directly lead to improvements in preconditions (collecting the first type of

transitions). To illustrate this, we created plots like Figure 4.2 to show that success rate

sometimes increases immediately after the model is updated using transitions from the failed
2Though depending on the learning algorithm, in some cases the preconditions may not update. We

observed this problem when learning negated preconditions for our most complex operators in Baking-Large,
which are the operators associated with the use-stand-mixer action predicate.

27



plans. We also observed this correlation in other small-scale domains: Baking-Toy, Blocks,

Minecraft, and Travel in PDDLGym[34].

In addition, we believe that GLIB’s goal sampling helped get across narrow passages by

occasionally sampling good goal sequences in Baking-Small. After the agent achieves the

last goal in the sequence, executing a random action helps get the second type of transitions.

We use the insights from studying GLIB to develop our method: we use planning to

fix incorrectly learned preconditions and collect the first type of transitions, and we rely on

curricula and demonstrations to get the second type of transitions.

28



Chapter 5

Our Algorithm For Exploration in

Relational Domains

The Baking-Large domain is too large and complex for random actions or GLIB to gather

enough useful transitions to learn a model capable of long-horizon planning. This motivated

us to develop a new algorithm that performs well in Baking-Large. In this section, we present

the main contribution of this work: an exploration method designed to efficiently learn action

abstractions in large, complex domains like Baking-Large.

5.1 Overview

At a high level, our method builds on the structure of GLIB, which alternates between

random action selection and planning to recognize mistakes in the learned model. Our

algorithm alternates between two modes: (1) teacher guidance and (2) planning.

In the teacher guidance mode, exploration is directed using a combination of demon-

strations and subgoals provided by a teacher. As discussed in Section 5.4, a well-designed

curriculum can elicit plan execution errors that improve the model. Subgoals can also guide

the agent to specific states where the teacher can provide critical demonstrations.

In planning mode, the algorithm focuses on planning to either a learned operator’s pre-

conditions or a teacher-provided subgoal. For each learned operator, we attempt to plan

to its randomly grounded preconditions and execute the operator to identify precondition

29



errors. If all learned operators have either been verified or lack plans to their precondi-

tions, the state is reset to the last achieved subgoal, and planning continues toward the next

teacher-provided subgoal.

We provide the high level algorithm in Algorithm 1. Following the pseudocode, we

describe our algorithm in detail in this section1.
1An implementation of this algorithm should not only follow the pseudocode but also take into account

the remarks in this chapter that are not conveniently expressed in the pseudocode.

30



Algorithm 1 Learn and Explore with Expert Demonstrations and Curricula
1 procedure Learn_and_Explore(Dinit, Env)
2 transition_data← Dinit

3 model ← LearnModel(transition_data)
4 state ← Env.Reset( )
5 g ← [] ▷ List of subgoals
6 last_achieved_subgoal_state ← state
7 prev_plan ← None
8 prev_action ← None
9 generalized_to_test_tasks ← False

10 while not generalized_to_test_tasks do
11 (action, plan, finished_plan_to_preconds, is_planning_to_preconds) ←

GetActionByPlanning(model, state, g)
12 if not AgentIsStuck(action, plan, prev_action, prev_plan) then
13 next_state ← Env.step(action)
14 transition_data.append((state, action, next_state))
15 plan_to_preconds_failed←CheckPlanFailed(is_planning_to_preconds,

state, next_state)
16 state ← next_state
17 if (not is_planning_to_preconds) and SubgoalAchieved(g[0], state) then
18 g.Pop(0)
19 last_achieved_subgoal_state ← state
20 end if
21 if finished_plan_to_preconds or plan_to_preconds_failed then
22 state ← Env.Reset(last_achieved_subgoal_state)
23 end if
24 prev_action ← action
25 prev_plan ← plan
26 else
27 (actions,gnew) ← AskExpert( )
28 for action in actions do
29 next_state ← Env.step(action)
30 transition_data.append((state, action, next_state))
31 state ← next_state
32 end for
33 if gnew is not None then
34 g ← gnew
35 last_achieved_subgoal_state ← Env.Reset( )
36 end if
37 state ← Env.Reset(last_achieved_subgoal_state)
38 generalized_to_test_tasks ← EvalModel(model)
39 end if
40 if not model.FitsAllData(transition_data) then
41 model ← LearnModel(transition_data)
42 end if
43 end while
44 end procedure 31



5.2 Initialization: Lines 2-9

Initial demonstrations Dinit and initial operators

Algorithm 1: Line 2

We initialize the dataset of transitions with demonstrations Dinit provided by a teacher.

Each demonstration is a tuple: (state, action, next state). The agent learns the initial

operators from this set of demonstrations in a call to LearnModel.

As an example, in Baking-Large, we (as the teacher) provided these demonstrations in

the following way. We created four training episodes. In each episode, we execute one plan

to the goal for demonstrations. The descriptions of the goals are as follows:

1. Bake a cake.

2. Bake a souffle.

3. Bake a cake and place it on a plate.

4. Bake a cake and a souffle.

After the initial set of demonstrations were collected, we chose to have the agent collect

all subsequent data in the fourth episode. This episode is the most complicated of the

training episodes: it has a state space that is a superset of all the other training episodes’

state spaces.

Model learning

Algorithm 1: Line 3

Our implementation of LearnModel is a probablistic rule learner [13] which performs

a greedy search over rule sets to maximize a score function. Since we are interested in

deterministic domains, we determinize each learned probablistic rule using its most probable

effect set to create an operator for each rule. The set of operators constitutes our model.

32



Environment Reset

Algorithm 1: Line 4

We call Env.Reset() to get the first observation in our episode. From this point onward,

our algorithm remains within a single episode, but the environment can be reset to any state

that is reachable from the episode’s starting state. In Algorithm 1, we denote resetting to

a specific state s as Env.Reset(s) and denote resetting to the episode’s starting state as

Env.Reset().

Initialize variables

Algorithm 1: Lines 5-9

We initialize five variables:

1. g: the list of subgoals that we will get from the teacher, initialized as an empty list.

2. last_achieved_subgoal_state: the state at which the last achieved subgoal was first

achieved, initialized to the starting state in the episode. We will reset the environment

back to this state after executing a plan to a learned operator’s preconditions. If there

are no subgoals given by the teacher yet, the start of the episode is the reset point.

3. prev_plan: the previous plan found to a subgoal or preconditions, initialized as None.

This is used for detecting if the agent should request intervention from the teacher

later in the algorithm.

4. prev_action: the previous action taken in the environment, initialized as None. This

is used for detecting if the agent should request intervention from the teacher later in

the algorithm.

5. generalized_to_test_tasks : a Boolean that signifies if the learned model passes the

test tasks, initialized to False. If this variable is true, we exit the training loop.

33



5.3 Training Loop: Lines 10-44

In the training loop, the agent decides which actions to take, executes them, perfectly ob-

serves the effects, and updates the learned model. The main contribution of this thesis is

the exploration strategy: we first try to automatically select the action by planning, but

when the agent cannot plan to improve the learned model, we ask a teacher to provide

demonstrations or curricula until the automatic strategy can take control again.

5.3.1 Automatic Action Selection

Algorithm 1: Line 11

In the automatic strategy, the agent tries to automatically pick an action by plan-

ning2 to learned preconditions or teacher-provided subgoals. We give pseudocode for the

GetActionByPlanning procedure in Algorithm 2.

Here’s a walkthrough of the pseudocode:

1. Operator Selection (Algorithm 2, Lines 2, 26-27 ): First try planning to the precon-

ditions of the learned operators. Select an operator from the set of learned operators

that has not yet been executed as part of a plan.

2. Grounding Preconditions (Algorithm 2, Lines 31-37 ): Randomly ground the op-

erator’s lifted preconditions in the current state. This grounded precondition becomes

the goal to plan toward. Append the grounded action to the end of the plan to execute

the operator after achieving the preconditions. If a plan is found, save its state (Lines

16, 31) and return it (Lines 33, 4).

3. Planning Attempts (Algorithm 2, Line 30 ): If no plan is found, attempt planning

with up to N = 200 (a tunable hyperparameter) additional random groundings of the

precondition.

4. Fallback to Teacher Subgoals (Algorithm 2, Lines 7-13 ): If still no plans are found,

switch to planning toward the next subgoal provided by the teacher. If a plan is found,
2In our implementation, we used the FastDownward [11] planning system.

34



return it.

5. Requesting Teacher Assistance (Algorithm 2, Line 14 ): If no subgoals are provided

or no plan to the subgoal can be found, we return values that indicate that we need to

request new subgoals or demonstrations from the teacher.

6. Plan Execution (Algorithm 2, Lines 22-25 ): When a plan is found, we save it and

execute it action by action until it either successfully completes or fails.

7. Handling Plan Failures (Algorithm 2, Line 19 ): If an action in the plan fails to

execute (e.g., it produces no effects in our simulation), stop following that plan.

This structured approach integrates planning to learned preconditions, planning to sub-

goals, and requesting teacher assistance for exploration.

35



Algorithm 2 Get Action by Planning to Learned Preconditions or Expert-Given Subgoals
1 procedure GetActionByPlanning(model, state, g)
2 action, plan, finished_plan_to_preconditions ← TargetPreconditions(model,

state)
3 if action is not None then
4 return (action, plan, finished_plan_to_preconditions,True)
5 end if
6 plan ← None
7 if Len(g) > 0 then
8 plan← GetPlanToGoal(model, state, g[0])
9 end if

10 if plan is not None then
11 action ← plan[0]
12 return (action, plan,False,False)
13 end if
14 return (None, [],False,False)
15 end procedure
16
17 procedure TargetPreconditions(model, state)
18 State Variables:
19 current_plan: Plan to preconditions being executed. If the plan fails during exe-

cution, this is automatically set to an empty list.
20 Hyperparameter:
21 N_TRIES ← 200 ▷ Number of tries to sample a random grounding of the

preconditions
22 if Len(current_plan) > 0 then
23 is_last_action_in_plan ← Len(current_plan) == 1
24 return current_plan.Pop(0), is_last_action_in_plan
25 end if
26 for operator in model do
27 if HasExecutedPlanForOperator(operator) then
28 continue
29 end if
30 for i in range(N_TRIES) do
31 (ground_preconditions, ground_action) ← Sam-

ple_Ground_Preconditions(operator.lifted_preconditions)
32 plan ← GetPlanToGoal(model, state, ground_preconditions)
33 if plan is not None then
34 current_plan ← plan + [ground_action]
35 is_last_action_in_plan ← Len(current_plan) == 1
36 a ← current_plan.Pop(0)
37 return a, current_plan, is_last_action_in_plan
38 end if
39 end for
40 end for
41 return (None, None, False)
42 end procedure 36



5.3.2 Detecting When to Request the Teacher to Intervene

Algorithm 1: Line 12

If AgentIsStuck returns True, the agent requests teacher intervention; otherwise, it

executes the action returned by GetActionByPlanning. If GetActionByPlanning returns

None, indicating that the automatic strategy has failed, AgentIsStuck will also return True,

prompting a request for teacher intervention. Additionally, if the agent repeatedly executes

a failed plan to a subgoal without causing a model update, AgentIsStuck will return True.

procedure AgentIsStuck(action, plan prev_action, prev_plan)
auto_explore_failed ← (action is None)
repeating_plan ← (plan == prev_plan) and (action == prev_action)
return auto_explore_failed or repeating_plan

end procedure

AgentIsStuck returns False: execute the next action in the plan

Algorithm 1: Lines 13-25

If the agent does not need guidance from the teacher, the agent proceeds to execute the

next action in the plan.

Upon the completion or execution failure of a plan from TargetPreconditions in Algo-

rithm 2, the state is reset to the last successfully achieved subgoal.

AgentIsStuck returns True: request intervention from a teacher

Algorithm 1: Lines 26-39

When AgentIsStuck returns True, the teacher is requested to provide additional demon-

strations and/or design a curriculum following the guidelines in Section 5.4.

To collect demonstrations, the teacher provides a plan to be executed from the current

state. The agent executes the sequence of actions in the environment, generating (state,

action, next_state) tuples as demonstrations. After receiving the demonstrations, the agent

resets (Line 37) to the last achieved subgoal—or the start of the episode if no subgoals exist

or a new curriculum was received—and attempts the automatic strategy again in the next

37



iteration of the while loop (Line 12). Collecting effective demonstrations causes a model

update (Lines 40-41), enabling the agent to plan successfully with the updated model.

The curriculum from the teacher is a sequence of subgoals that the agent plans to achieve

in order. It is designed either to guide the agent to make plans that result in failures, which

improve the model, or to lead the agent to specific states where plans from the teacher can

be executed.

In our setting, the training loop concludes when evaluation confirms that the learned

model enables an automated planner to generate open-loop plans that successfully solve

planning problems with novel initial states and goals not encountered during training. In

other settings, the loop may terminate based on different evaluation criteria to extract the

learned model under varying conditions. Our method ensures that teacher intervention is

requested after a finite time, at which point the model can be evaluated. In practice, our

method requests teacher guidance periodically, so the model is periodically evaluated.

5.3.3 Updating the Learned Model

Algorithm 1: Lines 40-41

The model is updated whenever the agent observes new transitions that are not explained

by the learned rules from our operator learner [13]. After a call to LearnModel, the rule sets

update so that all transitions are explained by the updated rules. For each nontrivial rule,

we derive a deterministic operator by extracting the rule’s preconditions and its most likely

effects. This set of operators collectively form our learned model.

5.4 How to Select Curricula and Demonstrations

For Baking-Large, we defined a set of planning problems to help the teacher benchmark the

agent. The tasks are arranged in order of increasing difficulty that roughly corresponds to

increasing plan lengths. The more challenging tasks depend on the successful completion of

simpler tasks or are composed of multiple simpler tasks.

The teacher’s process for selecting curricula and demonstrations involved the following

initial steps:

38



1. Model Evaluation: Test the agent on the benchmark, progressing from the easiest

to the hardest tasks. A task is solved if executing the plan open-loop reaches the goal.

Examine the easiest failed task. There are two things that may have happened. (1)

If no plans were found, identify the demonstrations or curricula needed by noting the

easier tasks that were solved and/or planning to subsets of the goal state. (2) If a plan

was executed, we identify the first failed operator in the plan and design a curriculum

to correct that operator’s preconditions. The next steps discuss case (2). We discuss

case (1) in Section 5.4.2.

2. Operator Analysis: Examine the learned operator associated with the failed action

in the plan. Inspect the operator’s incorrect preconditions and devise a curriculum

that elicits a plan execution error using the operator.

3. What to do if the curriculum doesn’t help improve the model: If the cur-

riculum doesn’t induce plan execution errors because no plans are found to a subgoal,

then provide demonstrations to the subgoal. If a plan execution error does not cause a

model update, we found that providing additional demonstrations or duplicating past

demonstrations sometimes helped update the model. However, in general, this algo-

rithm rests on the assumption that a plan execution error causes the operator learner

to update the model. We found that this assumption held for most cases with our

operator learner in Baking-Large; we leave investigating this issue for future work.3

We continue the discussion by illustrating two examples in Baking-Large: one on cur-

riculum selection and the other on choosing demonstrations.

5.4.1 Selecting curriculum to correct weak preconditions

If an operator failed in a plan during the teacher’s evaluation, the reason is that the precon-

ditions were too weak. To correct the preconditions, the teacher creates a curriculum where
3In our experiments, to learn simple operators, if a plan execution error didn’t result in a model update,

we reran the experiment after tuning hyperparameters in the operator learning algorithm. However, even
after tuning, our operator learner did not learn negated literals in the preconditions for our most complex
operators in Baking-Large (the operators in Appendix A.4 that are named "use-stand-mixer-in-bowl...")
from a single plan execution error. Future work could focus on improving the operator learner to update
upon plan execution error caused by missing negated literals in the preconditions for these operators.

39



the preconditions are met but the executing the operator results in unexpected effects.

Example: learning the put-pan-in-oven operator in Baking-Large

In this example, here is the learned operator that the teacher inspected:

(:action put-pan-in-oven0

:parameters (?x0 - container ?x1 - oven)

:precondition (and (put-pan-in-oven ?x0 ?x1)

(is-pan ?x0)

(not (oven-is-full ?x1)))

:effect (and

(container-in-an-oven ?x0)

(container-in-oven ?x0 ?x1)

(oven-is-full ?x1))

)

The teacher identified that this operator fails in a plan during the benchmarking. The

teacher thinks about how the learned precondition could be weaker than the ground truth,

and notices that the agent hasn’t realized that a pan has to be outside of ovens to be put

into an oven. To facilitate learning the correct operator, the teacher devises the following

curriculum:

1. Subgoal 1: (container-in-oven pan-0 oven-0)

2. Subgoal 2: (container-in-oven pan-0 oven-1)

After achieving the first subgoal, the agent immediately attempts to execute put-pan-in-

oven(pan-0, oven-1) to achieve the second subgoal. However, this action fails. The learned

precondition is missing the condition (not (container-in-an-oven ?pan)). By adding

this failure to the dataset and invoking LearnModel(transition_data), the agent updates

the model and learns the correct preconditions.

Here is the operator that is now learned, which matches the ground truth:

40



(:action put-pan-in-oven

:parameters (?pan - container ?oven - oven)

:precondition (and (put-pan-in-oven ?pan ?oven)

(is-pan ?pan)

(not (container-in-an-oven ?pan))

(not (oven-is-full ?oven)))

:effect (and

(container-in-oven ?pan ?oven)

(container-in-an-oven ?pan)

(oven-is-full ?oven))

)

5.4.2 Selecting demonstrations

When executing a plan to the next subgoal results in a failure that doesn’t improve the

model, or no plans to the next subgoal are found, the teacher can provide a plan to the next

subgoal.

Example: learning the operator to place desserts on plates

In this Baking-Large example, we walk through learning the operators associated with the ac-

tion move-baked-good-in-container-to-different-container and motivate the teacher’s demon-

stration.

At the initialization stage in Section 5.2, the agent was given one demonstration for the

action move-baked-good-in-container-to-different-container, where a cake has been placed on

a plate. From this demonstration, the agent learned this operator:

(:action move-baked-good-in-container-to-different-container0

:parameters (?x0 - container ?x1 - container ?x2 -

↪→ dessert_hypothetical)

:precondition (and (pan-is-full ?x0)

41



(move-baked-good-in-container-to-different-container ?

↪→ x0 ?x1 ?x2))

:effect (and

(not (dessert-in-container ?x0 ?x2))

(not (pan-is-full ?x0))

(dessert-in-container ?x1 ?x2))

)

The agent plans using the automatic strategy and improves the operator’s precondition:

(:action move-baked-good-in-container-to-different-container0

:parameters (?x0 - container ?x1 - container ?x2 -

↪→ dessert_hypothetical)

:precondition (and (is-cake ?x2)

(is-plate ?x1)

(pan-is-full ?x0)

(move-baked-good-in-container-to-different-container ?

↪→ x0 ?x1 ?x2))

:effect (and

(not (dessert-in-container ?x0 ?x2))

(not (pan-is-full ?x0))

(dessert-in-container ?x1 ?x2))

)

The teacher would like the agent to learn to put souffles on plates and provides the

following goal:

and((is-souffle dessert-0), (dessert-in-container plate-0 dessert-0))

However, no plans are found to this subgoal, so the agent requests the teacher for guid-

ance. Following the guidelines in Section 5.4, the teacher finds that the agent is able to

plan and achieve a subset of the goal state: (is-souffle dessert-0). The teacher realizes that

the agent is only missing the step to place the souffle on the plate, and figures out that the

42



operator describing this action is missing. The agent has learned how to place a cake on the

plate but not how to place a souffle on a plate.

To learn the correct operators, the agent needs to observe a transition from placing a

souffle on a plate. Instead of providing a plan to bake a souffle, to reduce the teacher’s effort,

the teacher specifies the subgoal for the agent to plan to make a souffle: (is-souffle dessert-

0). After the agent achieves this subgoal, the teacher provides the single demonstration

of moving the souffle from the pan to the plate by executing action move-baked-good-in-

container-to-different-container(pan-0 plate-0 dessert-0). After a model update, the agent

learns a general operator:

(:action move-baked-good-in-container-to-different-container0

:parameters (?x0 - container ?x1 - container ?x2 -

↪→ dessert_hypothetical)

:precondition (and (dessert-in-container ?x0 ?x2)

(is-plate ?x1)

(move-baked-good-in-container-to-different-container ?

↪→ x0 ?x1 ?x2))

:effect (and

(not (dessert-in-container ?x0 ?x2))

(not (pan-is-full ?x0))

(dessert-in-container ?x1 ?x2))

)

Afterwards, our automatic strategy refines the learned operator to more closely align

with the ground truth so that it can now be used to achieve the original goal. Here is the

final learned operator:

(:action move-baked-good-in-container-to-different-container0

:parameters (?x0 - container ?x1 - container ?x2 - dessert_hypothetical)

:precondition (and (not (container-in-an-oven ?x0))

(dessert-in-container ?x0 ?x2)

(is-plate ?x1)

43



(move-baked-good-in-container-to-different-container ?x0 ?x1 ?x2))

:effect (and

(not (dessert-in-container ?x0 ?x2))

(not (pan-is-full ?x0))

(dessert-in-container ?x1 ?x2))

)

5.5 Summary

In this section, we introduced our exploration algorithm for large-scale relational domains,

which alternates between automatic planning and teacher guidance. In the next section, we

show that this approach enables generalization and achieves greater data efficiency compared

to existing exploration methods in Baking-Large.

44



Chapter 6

Results

Our results demonstrate that our exploration method consistently solves long-horizon test

tasks (minimum plan length: 24 actions) in Baking-Large, whereas both GLIB and random

action selection fail on these tasks. Moreover, GLIB and random actions only succeed on

simple tasks, which our method solves with significantly fewer environment interactions.

In our experiments, we used the same operator learning algorithm [13] across all explo-

ration strategies. Each experiment was capped at 2,000 environment interactions.

6.1 Exploration Methods Evaluated

• GLIB-G1: A GLIB variant that samples grounded goals (indicated by "G" in "G1")

consisting of a single ground literal (the "1" in "G1"). Following the original imple-

mentation, goal novelty for GLIB-G1 is defined per episode: grounded literals visited

in previous episodes can be sampled again after episode resets.

• GLIB-L2: A GLIB variant that samples lifted goals (indicated by "L" in "L2") that

are conjunctions of two lifted literals (the "2" in "L2"). Following the original imple-

mentation, goal novelty for GLIB-L2 is defined across episodes: lifted goals achieved

in earlier episodes cannot be sampled again in subsequent ones.

• Random actions: This strategy uniformly samples actions from the action space (the

set of all ground actions).

45



• Our method: Employs the exploration strategy described in the previous chapter

(Algorithm 1).

6.2 Results on Long-Horizon Test Planning Problems

At test time, we used FastDownward to generate plans and evaluated success by executing

the plans open-loop to see if they achieved the goals. The evaluation consisted of two long-

horizon planning problems with goals unreachable during training:

1. Task 1: Bake two souffles using raw ingredients and serve them on plates. The

minimum solution requires 28 actions.

2. Task 2: Bake two cakes using raw ingredients and serve them on plates. The minimum

solution requires 24 actions.

Figure 6.1 shows the success rates for these tasks across five seeds of our method and

ten seeds for each baseline method. While none of the baseline methods solve the test tasks

within the 2,000 actions limit, our method succeeds in solving both tasks using fewer than

834 interactions.

6.2.1 Analysis of Baseline Method Failures

Baseline methods fail on the test tasks because their learned models lack the critical operators

required for generating valid plans. The successful executions of these operators are absent

from the data because achieving their preconditions requires long-horizon plans that are

unlikely under GLIB or random action selection. Random sampling of goals and actions

lacks the directed exploration needed to meet those operators’ preconditions.

46



Figure 6.1: Success rates on unseen long-horizon planning problems as training progresses.
None of the baseline methods—GLIB-G1, GLIB-L2, or random actions—solve any test tasks
within 2,000 interactions. Our method successfully solves all test tasks using fewer than 834
interactions.

6.3 Data Efficiency

Although GLIB and random action selection fail on long-horizon tasks, they can execute some

actions successfully during training. To compare data efficiency, we evaluated performance

on these tasks, which require plans of three or fewer actions. As shown in Figure 6.2, our

method achieves higher success rates with fewer environment interactions.

47



Figure 6.2: Success rates on 12 short-horizon tasks (solvable in three or fewer actions) with
goals reachable in the training episodes. Our method demonstrates superior data efficiency
compared to both GLIB variants and random action selection.

48



Chapter 7

Future Work

Our method relies on a teacher to provide curricula and demonstrations. Automating the

teacher’s role could be a desirable enhancement. As a potential solution, we explored the use

of Large Language Models (LLMs), such as GPT-4 [28], which has commonsense knowledge

abilities that could be harnessed for general knowledge-based domains like Baking-Large.

We conducted initial experiments to investigate GPT-4’s capabilities in acquiring demon-

strations within relational domains. Specifically, we tested two approaches: (1) integrating

GPT-4-generated operators into the GLIB framework, and (2) performing open-loop plan-

ning directly with GPT-4.

7.1 Integrating GLIB With Operators From GPT-4

We prompted GPT-4 to generate initial operators for planning to collect demonstrations.

The prompt templates are listed in Appendix B. We use GLIB to plan with the LLM-

proposed operators and the learned operators, while we evaluate the learned operators only.

Obtaining effective operators from the LLM allows the agent to plan and observe new sets

of effects early during training. These transitions, similar to the initial demonstrations in

our algorithm, accelerate the learning process. However, the operators from the LLM can

also be distracting and waste interactions.

The LLM-generated operators were beneficial for some domains. For popular domains

that the LLM may have encountered during its training (e.g., Minecraft and Blocks), the

49



LLM generates many operators that are accurate for the domain (Figures 7.1a and 7.1b). For

the domain (Baking-Small: Figure 7.1c) that was unfamiliar to the LLM but have predicates

with semantically meaningful names, the LLM also proposed some correct operators, but it

proposed more incorrect operators. During training, the agent discards an LLM operator

once the agent observes a transition that contradicts the operator.

The LLM-generated operators were more distracting than helpful for other domains.

When the LLM generates operators that are mostly or all incorrect, the generated operators

can still be used for planning, but the plans all fail and provide no informative feedback. This

wastes execution time that could have been spent using alternative exploration methods. For

instance, in the Doors domain (Figure 7.1d), the LLM-proposed operators were so ineffective

that vanilla GLIB performed better than GLIB with the LLM operators.

50



(a) Success rate vs. number of environ-
ment interactions in the Minecraft domain.
Comparison of two methods: GLIB + LLM-
initialized operators (blue) and GLIB (or-
ange).

(b) Success rate vs. number of environment
interactions in the Blocks domain. Compari-
son of two methods: GLIB + LLM-initialized
operators (blue) and GLIB (orange).

(c) Success rate vs. number of environ-
ment interactions in the Baking-Small do-
main. Comparison of two methods: GLIB +
LLM-initialized operators (blue) and GLIB
(orange).

(d) Success rate vs. number of environment
interactions in the Doors domain. Compari-
son of two methods: GLIB + LLM-initialized
operators (blue) and GLIB (orange).

Figure 7.1: Success rate curves comparing vanilla GLIB to GLIB initialized with LLM-
generated operators. In domains where the LLM generates almost all ground truth operators
accurately (Minecraft and Blocks), learning is significantly accelerated. However, in the
Baking and Doors domains, the LLM generates fewer correct operators or none at all, leading
to fewer useful transitions collected (Baking) or even distraction from better action selection
(Doors).

51



7.2 Planning Open-Loop with GPT-4

Given the mixed success of using GPT-4 on predicates in toy domains in Figure 7.1, we

designed Baking-Large with descriptive predicate names and augmented each predicate with

a natural language description. Instead of prompting with predicates as in the previous

experiments, we prompted GPT-4 with natural language descriptions to propose plans. The

descriptions, predicates, and prompt templates are listed in Appendix B.

GPT-4 demonstrated promise in generating the correct sequence of action names (Fig-

ure 7.2). However, it struggled to reliably produce grounded open-loop plans for our training

tasks. Errors emerged when grounding the actions due to challenges in reasoning about

long-range dependencies within the plans. For instance, the bowl used by the agent to add

ingredients should be the same bowl used later for mixing, but GPT-4 frequently failed to

maintain this consistency.

52



Figure 7.2: ChatGPT’s proposed action sequence to bake a cake in Baking-Large. In this
example shown, the proposed sequence of action predicate names can form a valid plan to
solve the goal. However, the groundings of the predicates in the later responses (not shown)
make the plan fail.

53



7.3 Takeaways and Future Work

Our findings highlight the following insights and opinions:

1. Natural Language Descriptions Are Essential: To better leverage GPT-4 for

generating plans and operators, predicates should be elaborated on by natural language

descriptions. GPT-4 performs better at proposing sequences of action names than at

directly reasoning about predicates.

2. Operators vs. Demonstrations: Proposing effective operators for exploration has

a similar benefit to planning directly with the LLM, as these operators enable the

observation of new sets of effects that improve learning.

3. Challenges in Grounded Plans: GPT-4 struggles to generate open-loop plans for

exploration tasks as the horizon increases. While the sequence of action predicate

names often forms a reasonable plan, errors arise when grounding the plan, particularly

due to long-range dependencies.

4. Brittleness of Handcrafted Prompts: A key challenge we observed is the sensitivity

of GPT-4’s outputs to variations in prompt templates or inputs. Developing systematic

approaches for prompt creation and optimization could greatly enhance the robustness

and effectiveness of prompting programs.

Future research could continue this line of work of using LLMs to acquire demonstrations

that introduce new effects while leveraging planning to refine the preconditions.

54



Chapter 8

Conclusion

When action executions are costly, learning a model for planning to goals must minimize

the number of actions taken. With this in mind, we proposed an algorithm for efficient

exploration in relational model-based reinforcement learning. Drawing on insights from goal-

literal babbling (GLIB), our algorithm focuses on correcting preconditions through planning

and using demonstrations from a teacher to expedite learning. We evaluated our approach

in a large-scale domain, Baking-Large, where our algorithm is able to learn models for long-

horizon planning and achieve greater data efficiency than GLIB.

Additionally, we conducted an initial investigation into the role of Large Language Models

(LLMs) in exploration within relational domains. Our experiments indicate that GPT-4 can

be beneficial by proposing operators in several domains, but GPT-4’s proposed operators

can be distracting for other domains. GPT-4 also demonstrated potential as a heuristic for

planning in the Baking-Large domain, but it made mistakes when grounding the plans.

Future work could extend our algorithm by developing automated guidance for the

teacher, potentially by leveraging LLMs. A potential path could use LLMs that accept

predicates annotated with natural language descriptions to propose plans closed-loop for

demonstrations. Such systems could address potential brittleness from hand-crafted inputs

and include systematic procedures for prompt and label generation to ensure robustness

and scalability. A careful characterization of the challenges posed by large-scale, complex

relational domains and the appropriate selection of teacher demonstrations and subgoals to

address those challenges would further advance this direction.

55



56



Appendix A

Domains

In this appendix, we provide the operators, predicates, and objects for each domain used in

the experiments presented in this thesis. The objects vary across problems. Rather than

listing the objects for each problem individually, we include the set of objects for the problem

with the largest object set in the domain.

The operators’ parameters and the objects are annotated with their respective types. For

instance, in the Blocks domain, a line such as "a - block" indicates an object named "a" of

type "block."

A.1 Baking-Small

A.1.1 Predicates

Action Predicates

1 (putegginpan ?egg - ingredient ?pan - pan)

2 (putflourinpan ?flour - ingredient ?pan - pan)

3 (mix ?pan - pan)

4 (putpaninoven ?pan - pan ?oven - oven)

5 (removepanfromoven ?pan - pan)

6 (bakecake ?new - ingredient ?oven - oven)

7 (bakesouffle ?new - ingredient ?oven - oven)

57



8 (cleanpan ?pan - pan ?soap - soap)

State Predicates

1 (isegg ?egg - ingredient)

2 (isflour ?flour - ingredient)

3 (panhasegg ?pan - pan)

4 (panhasflour ?pan - pan)

5 (panisclean ?pan - pan)

6 (paninoven ?pan - pan)

7 (inpan ?x - ingredient ?pan - pan)

8 (inoven ?pan - pan ?oven - oven)

9 (ovenisfull ?oven - oven)

10 (hypothetical ?new - ingredient)

11 (ismixed ?pan - pan)

12 (iscake ?new - ingredient)

13 (issouffle ?new - ingredient)

14 (soapconsumed ?soap - soap)

A.1.2 Operators

1 (:action putegginpan

2 :parameters (?egg - ingredient ?pan - pan)

3 :precondition (and (putegginpan ?egg ?pan)

4 (isegg ?egg)

5 (not (panhasegg ?pan))

6 (not (ismixed ?pan))

7 (panisclean ?pan)

8 (not (paninoven ?pan))

9 )

10 :effect (and (panhasegg ?pan)

11 (inpan ?egg ?pan)

58



12 )

13 )

14

15 (:action putflourinpan

16 :parameters (?flour - ingredient ?pan - pan)

17 :precondition (and (putflourinpan ?flour ?pan)

18 (isflour ?flour)

19 (not (panhasflour ?pan))

20 (not (ismixed ?pan))

21 (panisclean ?pan)

22 (not (paninoven ?pan))

23 )

24 :effect (and (panhasflour ?pan)

25 (inpan ?flour ?pan)

26 )

27 )

28

29 (:action mix

30 :parameters (?egg - ingredient ?flour - ingredient ?pan - pan)

31 :precondition (and (mix ?pan)

32 (inpan ?egg ?pan)

33 (inpan ?flour ?pan)

34 (isegg ?egg)

35 (isflour ?flour)

36 (not (paninoven ?pan))

37 )

38 :effect (and (ismixed ?pan)

39 (not (isegg ?egg))

40 (not (isflour ?flour))

41 (not (inpan ?egg ?pan))

42 (not (inpan ?flour ?pan))

43 (not (panhasegg ?pan))

59



44 (not (panhasflour ?pan))

45 )

46 )

47

48 (:action putpaninoven

49 :parameters (?pan - pan ?oven - oven)

50 :precondition (and (putpaninoven ?pan ?oven)

51 (not (ovenisfull ?oven))

52 (not (paninoven ?pan))

53 )

54 :effect (and (ovenisfull ?oven)

55 (inoven ?pan ?oven)

56 (paninoven ?pan)

57 )

58 )

59

60 (:action removepanfromoven

61 :parameters (?pan - pan ?oven - oven)

62 :precondition (and (removepanfromoven ?pan)

63 (inoven ?pan ?oven)

64 )

65 :effect (and (not (ovenisfull ?oven))

66 (not (inoven ?pan ?oven))

67 (not (paninoven ?pan))

68 )

69 )

70

71 (:action bakecake

72 :parameters (?oven - oven ?pan - pan ?new - ingredient)

73 :precondition (and (bakecake ?new ?oven)

74 (ismixed ?pan)

75 (inoven ?pan ?oven)

60



76 (hypothetical ?new)

77 )

78 :effect (and (not (ismixed ?pan))

79 (not (panisclean ?pan))

80 (not (hypothetical ?new))

81 (iscake ?new)

82 )

83 )

84

85 (:action bakesouffle

86 :parameters (?oven - oven ?egg - ingredient ?pan - pan ?new - ingredient)

87 :precondition (and (bakesouffle ?new ?oven)

88 (inpan ?egg ?pan)

89 (isegg ?egg)

90 (not (panhasflour ?pan))

91 (inoven ?pan ?oven)

92 (hypothetical ?new)

93 )

94 :effect (and (not (isegg ?egg))

95 (not (inpan ?egg ?pan))

96 (not (panhasegg ?pan))

97 (not (panisclean ?pan))

98 (not (hypothetical ?new))

99 (issouffle ?new)

100 )

101 )

102

103 (:action cleanpan

104 :parameters (?pan - pan ?soap - soap)

105 :precondition (and (cleanpan ?pan ?soap)

106 (not (soapconsumed ?soap))

107 (not (paninoven ?pan))

61



108 )

109 :effect (and (panisclean ?pan)

110 (soapconsumed ?soap)

111 )

112 )

A.1.3 Largest Set of Objects in a Problem

1 oven-0 - oven

2 oven-1 - oven

3 egg-0 - ingredient

4 egg-1 - ingredient

5 flour-0 - ingredient

6 flour-1 - ingredient

7 pan-0 - pan

8 pan-1 - pan

9 new-0 - ingredient

10 new-1 - ingredient

11 soap-0 - soap

A.2 Blocks

A.2.1 Predicates

Action Predicates

1 (pickup ?x - block)

2 (putdown ?x - block)

3 (stack ?x - block ?y - block)

4 (unstack ?x - block)

62



State Predicates

1 (on ?x - block ?y - block)

2 (ontable ?x - block)

3 (clear ?x - block)

4 (handempty ?x - robot)

5 (handfull ?x - robot)

6 (holding ?x - block)

A.2.2 Operators

1 (:action pick-up

2 :parameters (?x - block ?robot - robot)

3 :precondition (and

4 (pickup ?x)

5 (clear ?x)

6 (ontable ?x)

7 (handempty ?robot)

8 )

9 :effect (and

10 (not (ontable ?x))

11 (not (clear ?x))

12 (not (handempty ?robot))

13 (handfull ?robot)

14 (holding ?x)

15 )

16 )

17

18 (:action put-down

19 :parameters (?x - block ?robot - robot)

20 :precondition (and

21 (putdown ?x)

63



22 (holding ?x)

23 (handfull ?robot)

24 )

25 :effect (and

26 (not (holding ?x))

27 (clear ?x)

28 (handempty ?robot)

29 (not (handfull ?robot))

30 (ontable ?x))

31 )

32

33 (:action stack

34 :parameters (?x - block ?y - block ?robot - robot)

35 :precondition (and

36 (stack ?x ?y)

37 (holding ?x)

38 (clear ?y)

39 (handfull ?robot)

40 )

41 :effect (and

42 (not (holding ?x))

43 (not (clear ?y))

44 (clear ?x)

45 (handempty ?robot)

46 (not (handfull ?robot))

47 (on ?x ?y)

48 )

49 )

50

51 (:action unstack

52 :parameters (?x - block ?y - block ?robot - robot)

53 :precondition (and

64



54 (unstack ?x)

55 (on ?x ?y)

56 (clear ?x)

57 (handempty ?robot)

58 )

59 :effect (and

60 (holding ?x)

61 (clear ?y)

62 (not (clear ?x))

63 (not (handempty ?robot))

64 (handfull ?robot)

65 (not (on ?x ?y))

66 )

67 )

A.2.3 Largest Set of Objects in a Problem

1 d - block

2 b - block

3 a - block

4 c - block

5 e - block

6 f - block

7 robot - robot

A.3 Doors

A.3.1 Predicates

Action Predicates

65



1 (moveto ?loc - location)

2 (pick ?key - key)

State Predicates

1 (at ?loc - location)

2 (unlocked ?room - room)

3 (locinroom ?loc - location ?room - room)

4 (keyat ?key - key ?loc - location)

5 (keyforroom ?key - key ?room - room)

A.3.2 Operators

1

2 (:action moveto

3 :parameters (?sloc - location ?eloc - location ?eroom - room)

4 :precondition (and (moveto ?eloc)

5 (at ?sloc)

6 (unlocked ?eroom)

7 (locinroom ?eloc ?eroom)

8 )

9 :effect (and (not (at ?sloc))

10 (at ?eloc)

11 )

12 )

13

14 (:action pick

15 :parameters (?loc - location ?key - key ?room - room)

16 :precondition (and (pick ?key)

17 (at ?loc)

18 (keyat ?key ?loc)

66



19 (keyforroom ?key ?room)

20 )

21 :effect (and (not (keyat ?key ?loc))

22 (unlocked ?room)

23 )

24 )

A.3.3 Largest Set of Objects in a Problem

1 key-0 - key

2 key-1 - key

3 key-2 - key

4 key-3 - key

5 key-4 - key

6 key-5 - key

7 loc-0-0 - location

8 loc-0-1 - location

9 loc-0-2 - location

10 loc-0-3 - location

11 loc-0-4 - location

12 loc-0-5 - location

13 loc-0-6 - location

14 loc-0-7 - location

15 loc-0-8 - location

16 loc-0-9 - location

17 loc-1-0 - location

18 loc-1-1 - location

19 loc-1-2 - location

20 loc-1-3 - location

21 loc-1-4 - location

22 loc-1-5 - location

23 loc-1-6 - location

67



24 loc-1-7 - location

25 loc-1-8 - location

26 loc-1-9 - location

27 loc-2-0 - location

28 loc-2-1 - location

29 loc-2-2 - location

30 loc-2-3 - location

31 loc-2-4 - location

32 loc-2-5 - location

33 loc-2-6 - location

34 loc-2-7 - location

35 loc-2-8 - location

36 loc-2-9 - location

37 loc-3-0 - location

38 loc-3-1 - location

39 loc-3-2 - location

40 loc-3-3 - location

41 loc-3-4 - location

42 loc-3-5 - location

43 loc-3-6 - location

44 loc-3-7 - location

45 loc-3-8 - location

46 loc-3-9 - location

47 loc-4-0 - location

48 loc-4-1 - location

49 loc-4-2 - location

50 loc-4-3 - location

51 loc-4-4 - location

52 loc-4-5 - location

53 loc-4-6 - location

54 loc-4-7 - location

55 loc-4-8 - location

68



56 loc-4-9 - location

57 loc-5-0 - location

58 loc-5-1 - location

59 loc-5-2 - location

60 loc-5-3 - location

61 loc-5-4 - location

62 loc-5-5 - location

63 loc-5-6 - location

64 loc-5-7 - location

65 loc-5-8 - location

66 loc-5-9 - location

67 loc-6-0 - location

68 loc-6-1 - location

69 loc-6-2 - location

70 loc-6-3 - location

71 loc-6-4 - location

72 loc-6-5 - location

73 loc-6-6 - location

74 loc-6-7 - location

75 loc-6-8 - location

76 loc-6-9 - location

77 loc-7-0 - location

78 loc-7-1 - location

79 loc-7-2 - location

80 loc-7-3 - location

81 loc-7-4 - location

82 loc-7-5 - location

83 loc-7-6 - location

84 loc-7-7 - location

85 loc-7-8 - location

86 loc-7-9 - location

87 room-0 - room

69



88 room-1 - room

89 room-2 - room

90 room-3 - room

91 room-4 - room

92 room-5 - room

93 room-6 - room

A.4 Minecraft

A.4.1 Predicates

Action Predicates

State Predicates

1 (isgrass ?arg0 - moveable)

2 (islog ?arg0 - moveable)

3 (isplanks ?arg0 - moveable)

4 (at ?arg0 - moveable ?arg1 - static)

5 (agentat ?arg0 - static)

6 (inventory ?arg0 - moveable)

7 (hypothetical ?arg0 - moveable)

8 (equipped ?arg0 - moveable ?arg1 - agent)

9 (handsfree ?arg0 - agent)

A.4.2 Operators

1 (:action recall

2 :parameters (?var0 - moveable ?var1 - agent)

3 :precondition (and

70



4 (recall ?var0)

5 (equipped ?var0 ?var1)

6 )

7 :effect (and

8 (inventory ?var0)

9 (not (equipped ?var0 ?var1))

10 (handsfree ?var1)

11 )

12 )

13

14 (:action move

15 :parameters (?var0 - static ?var1 - static)

16 :precondition (and

17 (move ?var0)

18 (agentat ?var1)

19 )

20 :effect (and

21 (agentat ?var0)

22 (not (agentat ?var1))

23 )

24 )

25

26 (:action craftplank

27 :parameters (?var0 - moveable ?var1 - agent ?var2 - moveable)

28 :precondition (and

29 (craftplank ?var0 ?var2)

30 (hypothetical ?var0)

31 (islog ?var2)

32 (equipped ?var2 ?var1)

33 )

34 :effect (and

35 (inventory ?var0)

71



36 (isplanks ?var0)

37 (handsfree ?var1)

38 (not (equipped ?var2 ?var1))

39 (not (hypothetical ?var0))

40 (not (islog ?var2))

41 )

42 )

43

44 (:action equip

45 :parameters (?var0 - moveable ?var1 - agent)

46 :precondition (and

47 (equip ?var0)

48 (inventory ?var0)

49 (handsfree ?var1)

50 )

51 :effect (and

52 (equipped ?var0 ?var1)

53 (not (handsfree ?var1))

54 (not (inventory ?var0))

55 )

56 )

57

58 (:action pick

59 :parameters (?var0 - moveable ?var1 - static)

60 :precondition (and

61 (pick ?var0)

62 (at ?var0 ?var1)

63 (agentat ?var1)

64 )

65 :effect (and

66 (inventory ?var0)

67 (not (at ?var0 ?var1))

72



68 )

A.4.3 Largest Set of Objects in a Problem

1 log-0 - moveable

2 log-1 - moveable

3 log-2 - moveable

4 log-3 - moveable

5 grass-4 - moveable

6 grass-5 - moveable

7 new-0 - moveable

8 new-1 - moveable

9 new-2 - moveable

10 agent - agent

11 loc-0-0 - static

12 loc-0-1 - static

13 loc-0-2 - static

14 loc-0-3 - static

15 loc-0-4 - static

16 loc-1-0 - static

17 loc-1-1 - static

18 loc-1-2 - static

19 loc-1-3 - static

20 loc-1-4 - static

21 loc-2-0 - static

22 loc-2-1 - static

23 loc-2-2 - static

24 loc-2-3 - static

25 loc-2-4 - static

26 loc-3-0 - static

27 loc-3-1 - static

28 loc-3-2 - static

73



29 loc-3-3 - static

30 loc-3-4 - static

31 loc-4-0 - static

32 loc-4-1 - static

33 loc-4-2 - static

34 loc-4-3 - static

35 loc-4-4 - static

A.5 Baking-Large

A.5.1 Predicates

Action Predicates

1 (beat-egg-whites ?arg0 - electric_stand_mixer ?arg1 - container ?arg2 -

↪→ egg_hypothetical)

2 (crack-egg-and-put-in-container ?arg0 - egg_hypothetical ?arg1 - container)

3 (fold-stiff-egg-whites-into-mixture ?arg0 - spatula ?arg1 - container ?arg2 -

↪→ container ?arg3 - egg_hypothetical ?arg4 - mixture_hypothetical)

4 (move-baked-good-in-container-to-different-container ?arg0 - container ?arg1 -

↪→ container ?arg2 - dessert_hypothetical)

5 (pour-mixture-only ?arg0 - container ?arg1 - container ?arg2 -

↪→ mixture_hypothetical)

6 (pour-powdery-ingredient-from-container ?arg0 - container ?arg1 - container ?

↪→ arg2 - powder_ingredient_hypothetical)

7 (pour-powdery-ingredient-from-measuring-cup ?arg0 -

↪→ powder_ingredient_hypothetical ?arg1 - measuring_cup ?arg2 - container)

8 (preheat-oven-with-cake-settings ?arg0 - oven)

9 (preheat-oven-with-souffle-settings ?arg0 - oven)

10 (put-butter-in-container-from-measuring-cup ?arg0 - butter_hypothetical ?arg1 -

↪→ container)

11 (put-pan-in-oven ?arg0 - container ?arg1 - oven)

74



12 (remove-pan-from-oven ?arg0 - container ?arg1 - oven)

13 (separate-raw-yolk-from-egg-whites ?arg0 - egg_hypothetical ?arg1 -

↪→ egg_hypothetical ?arg2 - container ?arg3 - container)

14 (set-oven-with-cake-bake-time-and-press-start ?arg0 - oven ?arg1 -

↪→ dessert_hypothetical ?arg2 - mixture_hypothetical)

15 (set-oven-with-souffle-bake-time-and-press-start ?arg0 - oven ?arg1 -

↪→ dessert_hypothetical ?arg2 - mixture_hypothetical)

16 (transfer-butter-from-pan-or-bowl ?arg0 - container ?arg1 - container ?arg2 -

↪→ butter_hypothetical)

17 (transfer-egg-from-pan-or-bowl ?arg0 - container ?arg1 - container ?arg2 -

↪→ egg_hypothetical)

18 (use-stand-mixer ?arg0 - electric_stand_mixer ?arg1 - container ?arg2 -

↪→ mixture_hypothetical)

State Predicates

1 (sugar-is-consumed ?arg0 - powder_ingredient_hypothetical)

2 (baking-powder-is-consumed ?arg0 - powder_ingredient_hypothetical)

3 (tablespoons-of-flour-is-consumed ?arg0 - powder_ingredient_hypothetical)

4 (cups-of-flour-is-consumed ?arg0 - powder_ingredient_hypothetical)

5 (butter-is-consumed ?arg0 - butter_hypothetical)

6 (butter-in-container ?arg0 - container ?arg1 - butter_hypothetical)

7 (butter-in-measuring-cup ?arg0 - butter_hypothetical ?arg1 - measuring_cup)

8 (container-in-an-oven ?arg0 - container)

9 (container-in-oven ?arg0 - container ?arg1 - oven)

10 (dessert-in-container ?arg0 - container ?arg1 - dessert_hypothetical)

11 (dessert-is-hypothetical ?arg0 - dessert_hypothetical)

12 (different ?arg0 - spatula ?arg1 - spatula)

13 (egg-in-container ?arg0 - container ?arg1 - egg_hypothetical)

14 (egg-is-hypothetical ?arg0 - egg_hypothetical)

15 (is-baking-powder ?arg0 - powder_ingredient_hypothetical)

16 (is-bowl ?arg0 - container)

75



17 (is-butter ?arg0 - butter_hypothetical)

18 (is-cake ?arg0 - dessert_hypothetical)

19 (is-cups-of-flour ?arg0 - powder_ingredient_hypothetical)

20 (is-egg ?arg0 - egg_hypothetical)

21 (is-in-shell ?arg0 - egg_hypothetical)

22 (is-mixture ?arg0 - mixture_hypothetical)

23 (is-oven ?arg0 - oven)

24 (is-pan ?arg0 - container)

25 (is-plate ?arg0 - container)

26 (is-raw-egg-whites ?arg0 - egg_hypothetical)

27 (is-raw-egg-yolk ?arg0 - egg_hypothetical)

28 (is-souffle ?arg0 - dessert_hypothetical)

29 (is-sugar ?arg0 - powder_ingredient_hypothetical)

30 (is-tablespoons-of-flour ?arg0 - powder_ingredient_hypothetical)

31 (is-whipped-egg-whites ?arg0 - egg_hypothetical)

32 (is-whole-raw-egg ?arg0 - egg_hypothetical)

33 (mixture-has-baking-powder ?arg0 - mixture_hypothetical)

34 (mixture-has-butter ?arg0 - mixture_hypothetical)

35 (mixture-has-cups-of-flour ?arg0 - mixture_hypothetical)

36 (mixture-has-folded-raw-egg-whites ?arg0 - mixture_hypothetical)

37 (mixture-has-blended-raw-egg-whites ?arg0 - mixture_hypothetical)

38 (mixture-has-raw-egg-yolk ?arg0 - mixture_hypothetical)

39 (mixture-has-sugar ?arg0 - mixture_hypothetical)

40 (mixture-has-tablespoons-of-flour ?arg0 - mixture_hypothetical)

41 (mixture-in-container ?arg0 - container ?arg1 - mixture_hypothetical)

42 (mixture-is-airy ?arg0 - mixture_hypothetical)

43 (mixture-is-hypothetical ?arg0 - mixture_hypothetical)

44 (oven-is-full ?arg0 - oven)

45 (oven-is-heated-for-cake ?arg0 - oven)

46 (oven-is-heated-for-souffle ?arg0 - oven)

47 (pan-is-damaged ?arg0 - container)

48 (pan-is-full ?arg0 - container)

76



49 (powder-ingredient-in-container ?arg0 - container ?arg1 -

↪→ powder_ingredient_hypothetical)

50 (powder-ingredient-in-measuring-cup ?arg0 - powder_ingredient_hypothetical ?

↪→ arg1 - measuring_cup)

A.5.2 Operators

1 (:action bake-cake

2 :parameters (?oven - oven ?pan - container ?mixture - mixture_hypothetical ?

↪→ cake - dessert_hypothetical)

3 :precondition (and (set-oven-with-cake-bake-time-and-press-start ?oven ?cake ?

↪→ mixture)

4 (oven-is-heated-for-cake ?oven)

5 (dessert-is-hypothetical ?cake)

6 (not (mixture-is-hypothetical ?mixture))

7 (container-in-oven ?pan ?oven)

8 (not (pan-is-full ?pan))

9 (is-pan ?pan)

10 (mixture-in-container ?pan ?mixture)

11 (mixture-has-blended-raw-egg-whites ?mixture)

12 (mixture-has-raw-egg-yolk ?mixture)

13 (mixture-has-butter ?mixture)

14 (mixture-has-sugar ?mixture)

15 (mixture-has-cups-of-flour ?mixture)

16 (mixture-has-baking-powder ?mixture)

17 (not (mixture-is-airy ?mixture)))

18 :effect (and

19 (not (is-mixture ?mixture))

20 (not (mixture-has-blended-raw-egg-whites ?mixture))

21 (not (mixture-has-raw-egg-yolk ?mixture))

22 (not (mixture-has-butter ?mixture))

23 (not (mixture-has-sugar ?mixture))

77



24 (not (mixture-has-cups-of-flour ?mixture))

25 (not (mixture-has-baking-powder ?mixture))

26 (not (mixture-in-container ?pan ?mixture))

27 (not (dessert-is-hypothetical ?cake))

28 (is-cake ?cake)

29 (pan-is-full ?pan)

30 (dessert-in-container ?pan ?cake))

31 )

32

33 (:action bake-souffle

34 :parameters (?oven - oven ?pan - container ?mixture - mixture_hypothetical ?

↪→ souffle - dessert_hypothetical)

35 :precondition (and (set-oven-with-souffle-bake-time-and-press-start ?oven ?

↪→ souffle ?mixture)

36 (oven-is-heated-for-souffle ?oven)

37 (dessert-is-hypothetical ?souffle)

38 (is-mixture ?mixture)

39 (is-pan ?pan)

40 (not (pan-is-full ?pan))

41 (mixture-in-container ?pan ?mixture)

42 (container-in-oven ?pan ?oven)

43 (not (mixture-is-hypothetical ?mixture))

44 (mixture-has-folded-raw-egg-whites ?mixture)

45 (mixture-has-raw-egg-yolk ?mixture)

46 (mixture-has-butter ?mixture)

47 (mixture-has-sugar ?mixture)

48 (not (mixture-has-cups-of-flour ?mixture))

49 (mixture-is-airy ?mixture))

50 :effect (and

51 (not (is-mixture ?mixture))

52 (not (mixture-has-folded-raw-egg-whites ?mixture))

53 (not (mixture-has-raw-egg-yolk ?mixture))

78



54 (not (mixture-has-butter ?mixture))

55 (not (mixture-has-sugar ?mixture))

56 (not (mixture-has-tablespoons-of-flour ?mixture))

57 (not (mixture-is-airy ?mixture))

58 (not (mixture-in-container ?pan ?mixture))

59 (not (dessert-is-hypothetical ?souffle))

60 (is-souffle ?souffle)

61 (pan-is-full ?pan)

62 (dessert-in-container ?pan ?souffle))

63 )

64

65 (:action beat-egg-whites

66 :parameters (?e - egg_hypothetical ?m - electric_stand_mixer ?c - container)

67 :precondition (and (beat-egg-whites ?m ?c ?e)

68 (egg-in-container ?c ?e)

69 (is-raw-egg-whites ?e)

70 (is-egg ?e)

71 (not (egg-is-hypothetical ?e)))

72 :effect (and

73 (is-whipped-egg-whites ?e))

74 )

75

76 (:action crack-egg-in-container

77 :parameters (?egg - egg_hypothetical ?c - container)

78 :precondition (and (crack-egg-and-put-in-container ?egg ?c)

79 (not (egg-in-container ?c ?egg))

80 (is-egg ?egg)

81 (is-in-shell ?egg)

82 (not (container-in-an-oven ?c)))

83 :effect (and

84 (egg-in-container ?c ?egg)

85 (is-whole-raw-egg ?egg)

79



86 (not (is-in-shell ?egg)))

87 )

88

89 (:action fold-egg-whites-into-mixture

90 :parameters (?e - egg_hypothetical ?m - mixture_hypothetical ?from - container

↪→ ?to - container ?s - spatula)

91 :precondition (and (fold-stiff-egg-whites-into-mixture ?s ?from ?to ?e ?m)

92 (mixture-in-container ?to ?m)

93 (egg-in-container ?from ?e)

94 (is-whipped-egg-whites ?e)

95 (not (egg-is-hypothetical ?e))

96 (is-mixture ?m)

97 (not (mixture-is-hypothetical ?m))

98 (not (container-in-an-oven ?from))

99 (not (container-in-an-oven ?to)))

100 :effect (and

101 (mixture-is-airy ?m)

102 (not (is-whipped-egg-whites ?e))

103 (not (is-egg ?e))

104 (mixture-has-folded-raw-egg-whites ?m)

105 (not (egg-in-container ?from ?e)))

106 )

107

108 (:action place-cake-on-plate

109 :parameters (?from - container ?to - container ?cake - dessert_hypothetical)

110 :precondition (and (move-baked-good-in-container-to-different-container ?from ?

↪→ to ?cake)

111 (dessert-in-container ?from ?cake)

112 (not (dessert-is-hypothetical ?cake))

113 (is-cake ?cake)

114 (is-plate ?to)

115 (not (container-in-an-oven ?to))

80



116 (not (container-in-an-oven ?from)))

117 :effect (and

118 (dessert-in-container ?to ?cake)

119 (not (pan-is-full ?from))

120 (not (dessert-in-container ?from ?cake)))

121 )

122

123 (:action place-souffle-on-plate

124 :parameters (?from - container ?to - container ?souffle - dessert_hypothetical)

125 :precondition (and (dessert-in-container ?from ?souffle)

126 (move-baked-good-in-container-to-different-container ?from ?to ?souffle)

127 (is-souffle ?souffle)

128 (not (dessert-is-hypothetical ?souffle))

129 (is-plate ?to)

130 (not (container-in-an-oven ?to))

131 (not (container-in-an-oven ?from)))

132 :effect (and

133 (dessert-in-container ?to ?souffle)

134 (not (pan-is-full ?from))

135 (not (dessert-in-container ?from ?souffle)))

136 )

137

138 (:action preheat-for-cake

139 :parameters (?o - oven)

140 :precondition (and (preheat-oven-with-cake-settings ?o)

141 (not (oven-is-heated-for-cake ?o)))

142 :effect (and

143 (oven-is-heated-for-cake ?o)

144 (not (oven-is-heated-for-souffle ?o)))

145 )

146

147 (:action preheat-for-souffle

81



148 :parameters (?o - oven)

149 :precondition (and (preheat-oven-with-souffle-settings ?o)

150 (not (oven-is-heated-for-souffle ?o)))

151 :effect (and

152 (not (oven-is-heated-for-cake ?o))

153 (oven-is-heated-for-souffle ?o))

154 )

155

156 (:action put-butter-in-bowl

157 :parameters (?butter - butter_hypothetical ?bowl - container ?cup -

↪→ measuring_cup)

158 :precondition (and (put-butter-in-container-from-measuring-cup ?butter ?bowl)

159 (is-butter ?butter)

160 (not (butter-in-container ?bowl ?butter))

161 (not (container-in-an-oven ?bowl))

162 (butter-in-measuring-cup ?butter ?cup))

163 :effect (and

164 (butter-in-container ?bowl ?butter)

165 (not (butter-in-measuring-cup ?butter ?cup)))

166 )

167

168 (:action put-butter-in-pan

169 :parameters (?butter - butter_hypothetical ?pan - container ?cup -

↪→ measuring_cup)

170 :precondition (and (put-butter-in-container-from-measuring-cup ?butter ?pan)

171 (not (butter-in-container ?pan ?butter))

172 (is-butter ?butter)

173 (is-pan ?pan)

174 (not (container-in-an-oven ?pan))

175 (butter-in-measuring-cup ?butter ?cup))

176 :effect (and

177 (butter-in-container ?pan ?butter)

82



178 (not (butter-in-measuring-cup ?butter ?cup)))

179 )

180

181 (:action put-pan-in-oven

182 :parameters (?pan - container ?oven - oven)

183 :precondition (and (put-pan-in-oven ?pan ?oven)

184 (is-pan ?pan)

185 (not (container-in-an-oven ?pan))

186 (not (oven-is-full ?oven)))

187 :effect (and

188 (container-in-oven ?pan ?oven)

189 (container-in-an-oven ?pan)

190 (oven-is-full ?oven))

191 )

192

193 (:action put-powdery-ingredient-in-container

194 :parameters (?p - powder_ingredient_hypothetical ?c - container ?cup -

↪→ measuring_cup)

195 :precondition (and (pour-powdery-ingredient-from-measuring-cup ?p ?cup ?c)

196 (not (powder-ingredient-in-container ?c ?p))

197 (not (container-in-an-oven ?c))

198 (powder-ingredient-in-measuring-cup ?p ?cup))

199 :effect (and

200 (powder-ingredient-in-container ?c ?p)

201 (not (powder-ingredient-in-measuring-cup ?p ?cup)))

202 )

203

204 (:action put-powdery-ingredient-into-container

205 :parameters (?s - powder_ingredient_hypothetical ?p - container ?cup -

↪→ measuring_cup)

206 :precondition (and (pour-powdery-ingredient-from-measuring-cup ?s ?cup ?p)

207 (not (powder-ingredient-in-container ?p ?s))

83



208 (not (container-in-an-oven ?p))

209 (powder-ingredient-in-measuring-cup ?s ?cup))

210 :effect (and

211 (powder-ingredient-in-container ?p ?s)

212 (not (powder-ingredient-in-measuring-cup ?s ?cup)))

213 )

214

215 (:action remove-pan-from-oven

216 :parameters (?pan - container ?oven - oven)

217 :precondition (and (remove-pan-from-oven ?pan ?oven)

218 (container-in-oven ?pan ?oven)

219 (is-pan ?pan))

220 :effect (and

221 (not (oven-is-full ?oven))

222 (not (container-in-oven ?pan ?oven))

223 (not (container-in-an-oven ?pan))

224 (not (oven-is-heated-for-cake ?oven))

225 (not (oven-is-heated-for-souffle ?oven)))

226 )

227

228 (:action separate-egg

229 :parameters (?x - egg_hypothetical ?y - egg_hypothetical ?eggyolkcontainer -

↪→ container ?eggwhitescontainer - container)

230 :precondition (and (separate-raw-yolk-from-egg-whites ?x ?y ?eggyolkcontainer ?

↪→ eggwhitescontainer)

231 (is-egg ?x)

232 (is-whole-raw-egg ?x)

233 (not (is-in-shell ?x))

234 (not (is-egg ?y))

235 (egg-is-hypothetical ?y)

236 (egg-in-container ?eggyolkcontainer ?x))

237 :effect (and

84



238 (not (egg-is-hypothetical ?y))

239 (not (is-whole-raw-egg ?x))

240 (is-egg ?y)

241 (is-raw-egg-yolk ?x)

242 (is-raw-egg-whites ?y)

243 (not (is-in-shell ?y))

244 (not (egg-in-container ?eggyolkcontainer ?y))

245 (egg-in-container ?eggwhitescontainer ?y))

246 )

247

248 (:action transfer-butter

249 :parameters (?from - container ?to - container ?butter - butter_hypothetical)

250 :precondition (and (transfer-butter-from-pan-or-bowl ?from ?to ?butter)

251 (butter-in-container ?from ?butter)

252 (is-butter ?butter)

253 (not (container-in-an-oven ?from))

254 (not (container-in-an-oven ?to)))

255 :effect (and

256 (not (butter-in-container ?from ?butter))

257 (butter-in-container ?to ?butter))

258 )

259

260 (:action transfer-egg

261 :parameters (?from - container ?to - container ?egg - egg_hypothetical)

262 :precondition (and (transfer-egg-from-pan-or-bowl ?from ?to ?egg)

263 (egg-in-container ?from ?egg)

264 (not (egg-is-hypothetical ?egg))

265 (is-egg ?egg)

266 (not (container-in-an-oven ?from))

267 (not (container-in-an-oven ?to)))

268 :effect (and

269 (not (egg-in-container ?from ?egg))

85



270 (egg-in-container ?to ?egg))

271 )

272

273 (:action transfer-mixture

274 :parameters (?from - container ?to - container ?mixture - mixture_hypothetical)

275 :precondition (and (pour-mixture-only ?from ?to ?mixture)

276 (mixture-in-container ?from ?mixture)

277 (not (mixture-is-hypothetical ?mixture))

278 (is-mixture ?mixture)

279 (not (container-in-an-oven ?from))

280 (not (container-in-an-oven ?to))

281 (not (pan-is-full ?to)))

282 :effect (and

283 (not (mixture-in-container ?from ?mixture))

284 (mixture-in-container ?to ?mixture))

285 )

286

287 (:action transfer-powdery-ingredient

288 :parameters (?from - container ?to - container ?p -

↪→ powder_ingredient_hypothetical)

289 :precondition (and (pour-powdery-ingredient-from-container ?from ?to ?p)

290 (powder-ingredient-in-container ?from ?p)

291 (not (container-in-an-oven ?from))

292 (not (container-in-an-oven ?to)))

293 :effect (and

294 (not (powder-ingredient-in-container ?from ?p))

295 (powder-ingredient-in-container ?to ?p))

296 )

297

298 (:action use-stand-mixer-in-bowl-for-cake

299 :parameters (?mixer - electric_stand_mixer ?bowl - container ?mixture -

↪→ mixture_hypothetical ?egg0 - egg_hypothetical ?egg1 - egg_hypothetical ?

86



↪→ egg2 - egg_hypothetical ?egg3 - egg_hypothetical ?cupsofflour -

↪→ powder_ingredient_hypothetical ?tablespoonsofflour -

↪→ powder_ingredient_hypothetical ?sugar - powder_ingredient_hypothetical ?

↪→ bakingpowder - powder_ingredient_hypothetical ?butter -

↪→ butter_hypothetical)

300 :precondition (and (use-stand-mixer ?mixer ?bowl ?mixture)

301 (is-bowl ?bowl)

302 (mixture-is-hypothetical ?mixture)

303 (butter-in-container ?bowl ?butter)

304 (egg-in-container ?bowl ?egg1)

305 (is-baking-powder ?bakingpowder)

306 (is-butter ?butter)

307 (is-cups-of-flour ?cupsofflour)

308 (is-sugar ?sugar)

309 (is-whole-raw-egg ?egg1)

310 (powder-ingredient-in-container ?bowl ?bakingpowder)

311 (powder-ingredient-in-container ?bowl ?cupsofflour)

312 (powder-ingredient-in-container ?bowl ?sugar)

313 (not (egg-in-container ?bowl ?egg0))

314 (not (egg-in-container ?bowl ?egg2))

315 (not (egg-in-container ?bowl ?egg3)))

316 :effect (and

317 (sugar-is-consumed ?sugar)

318 (butter-is-consumed ?butter)

319 (cups-of-flour-is-consumed ?cupsofflour)

320 (baking-powder-is-consumed ?bakingpowder)

321 (not (mixture-is-airy ?mixture))

322 (mixture-in-container ?bowl ?mixture)

323 (is-mixture ?mixture)

324 (not (mixture-is-hypothetical ?mixture))

325 (mixture-has-baking-powder ?mixture)

326 (mixture-has-butter ?mixture)

87



327 (mixture-has-cups-of-flour ?mixture)

328 (mixture-has-sugar ?mixture)

329 (mixture-has-raw-egg-yolk ?mixture)

330 (mixture-has-blended-raw-egg-whites ?mixture)

331 (not (butter-in-container ?bowl ?butter))

332 (not (egg-in-container ?bowl ?egg1))

333 (not (is-egg ?egg1))

334 (not (is-baking-powder ?bakingpowder))

335 (not (is-butter ?butter))

336 (not (is-cups-of-flour ?cupsofflour))

337 (not (is-sugar ?sugar))

338 (not (is-whole-raw-egg ?egg1))

339 (not (powder-ingredient-in-container ?bowl ?bakingpowder))

340 (not (powder-ingredient-in-container ?bowl ?cupsofflour))

341 (not (powder-ingredient-in-container ?bowl ?sugar)))

342 )

343

344 (:action use-stand-mixer-in-bowl-for-souffle

345 :parameters (?mixer - electric_stand_mixer ?bowl - container ?mixture -

↪→ mixture_hypothetical ?egg0 - egg_hypothetical ?egg1 - egg_hypothetical ?

↪→ egg2 - egg_hypothetical ?egg3 - egg_hypothetical ?cupsofflour -

↪→ powder_ingredient_hypothetical ?tablespoonsofflour -

↪→ powder_ingredient_hypothetical ?sugar - powder_ingredient_hypothetical ?

↪→ bakingpowder - powder_ingredient_hypothetical ?butter -

↪→ butter_hypothetical)

346 :precondition (and (use-stand-mixer ?mixer ?bowl ?mixture)

347 (is-bowl ?bowl)

348 (mixture-is-hypothetical ?mixture)

349 (butter-in-container ?bowl ?butter)

350 (egg-in-container ?bowl ?egg1)

351 (is-butter ?butter)

352 (is-raw-egg-yolk ?egg1)

88



353 (is-sugar ?sugar)

354 (is-tablespoons-of-flour ?tablespoonsofflour)

355 (powder-ingredient-in-container ?bowl ?sugar)

356 (powder-ingredient-in-container ?bowl ?tablespoonsofflour)

357 (not (egg-in-container ?bowl ?egg0))

358 (not (egg-in-container ?bowl ?egg2))

359 (not (egg-in-container ?bowl ?egg3)))

360 :effect (and

361 (sugar-is-consumed ?sugar)

362 (butter-is-consumed ?butter)

363 (tablespoons-of-flour-is-consumed ?tablespoonsofflour)

364 (not (mixture-is-airy ?mixture))

365 (mixture-in-container ?bowl ?mixture)

366 (is-mixture ?mixture)

367 (not (mixture-is-hypothetical ?mixture))

368 (mixture-has-butter ?mixture)

369 (mixture-has-raw-egg-yolk ?mixture)

370 (mixture-has-sugar ?mixture)

371 (mixture-has-tablespoons-of-flour ?mixture)

372 (not (butter-in-container ?bowl ?butter))

373 (not (egg-in-container ?bowl ?egg1))

374 (not (is-butter ?butter))

375 (not (is-raw-egg-yolk ?egg1))

376 (not (is-egg ?egg1))

377 (not (is-sugar ?sugar))

378 (not (is-tablespoons-of-flour ?tablespoonsofflour))

379 (not (powder-ingredient-in-container ?bowl ?sugar))

380 (not (powder-ingredient-in-container ?bowl ?tablespoonsofflour)))

381 )

89



A.5.3 Largest Set of Objects in a Problem

1 bowl-0 - container

2 bowl-1 - container

3 butter-0 - butter_hypothetical

4 butter-1 - butter_hypothetical

5 dessert-0 - dessert_hypothetical

6 dessert-1 - dessert_hypothetical

7 egg-0 - egg_hypothetical

8 egg-1 - egg_hypothetical

9 egg-2 - egg_hypothetical

10 egg-3 - egg_hypothetical

11 flour-2 - powder_ingredient_hypothetical

12 flour-3 - powder_ingredient_hypothetical

13 measuring-cup-0 - measuring_cup

14 measuring-cup-1 - measuring_cup

15 measuring-cup-2 - measuring_cup

16 measuring-cup-3 - measuring_cup

17 measuring-cup-4 - measuring_cup

18 measuring-cup-5 - measuring_cup

19 measuring-cup-6 - measuring_cup

20 measuring-cup-7 - measuring_cup

21 measuring-cup-8 - measuring_cup

22 measuring-cup-9 - measuring_cup

23 mixer-0 - electric_stand_mixer

24 mixture-0 - mixture_hypothetical

25 mixture-1 - mixture_hypothetical

26 mixture-2 - mixture_hypothetical

27 mixture-3 - mixture_hypothetical

28 mixture-4 - mixture_hypothetical

29 mixture-5 - mixture_hypothetical

30 mixture-6 - mixture_hypothetical

90



31 mixture-7 - mixture_hypothetical

32 mixture-8 - mixture_hypothetical

33 oven-0 - oven

34 oven-1 - oven

35 pan-0 - container

36 pan-1 - container

37 plate-0 - container

38 plate-1 - container

39 spatula-0 - spatula

40 sugar-0 - powder_ingredient_hypothetical

41 sugar-1 - powder_ingredient_hypothetical

91



92



Appendix B

Prompt Templates

This appendix presents several prompt templates used in experiments with LLMs throughout

this thesis.

B.1 Prompt Templates for Generating Operators

In one set of experiments, we prompted the LLM to generate operators to initialize GLIB. We

did not observe a significant difference in effectiveness across different prompting techniques,

likely due to the simplicity and small scale of the domains used in these experiments (these

techniques were not tested on Baking-Large).

Fill-in-the-Blank PDDL Domain Template

This template uses the predicates, object types, and domain name as inputs to generate the

prompt. Below is an example prompt for the Blocks domain.

1 # Fill in the <TODO> to complete the PDDL domain.

2 (define (domain blocks)

3 (:types robot block)

4 (:predicates

5 (clear ?v0 - block)

6 (handempty ?v0 - robot)

7 (handfull ?v0 - robot)

93



8 (holding ?v0 - block)

9 (on ?v0 - block ?v1 - block)

10 (ontable ?v0 - block)

11 )

12

13 (:action pickup

14 :parameters (?v0 - block <TODO>)

15 :precondition (and

16 <TODO>

17 )

18 :effect (and

19 <TODO>

20 )

21 )

22 (:action putdown

23 :parameters (?v0 - block <TODO>)

24 :precondition (and

25 <TODO>

26 )

27 :effect (and

28 <TODO>

29 )

30 )

31 (:action stack

32 :parameters (?v0 - block ?v1 - block <TODO>)

33 :precondition (and

34 <TODO>

35 )

36 :effect (and

37 <TODO>

38 )

39 )

94



40 (:action unstack

41 :parameters (?v0 - block <TODO>)

42 :precondition (and

43 <TODO>

44 )

45 :effect (and

46 <TODO>

47 )

48 )

49 )

B.1.1 Few-Shot Chain-of-Thought Prompt Template

This prompting pipeline, inspired by ADA [41] and adapted for our problem setting, is

designed to generate PDDL operators with action predicates. The pipeline consists of four

stages:

1. Goal Translation: Since our goals are conjunctions of predicates, the LLM is prompted

using few-shot examples to translate these into natural language descriptions.

2. Task Decomposition: Using the natural language goal, the LLM is prompted using

few-shot examples to generate a sequence of action predicates required to achieve the

goal.

3. Operator Definition: Based on the action names generated in the previous step, the

LLM is prompted using few-shot examples to define operators (including parameters,

preconditions, and effects) without associating them with action predicates.

4. Skill Association: Finally, the LLM is prompted using few-shot examples to associate

each operator from the previous step with a specific action predicate defined in the

domain.

The following templates illustrate the use of few-shot examples from domains not included

in our experiments.

95



Goal Translation Prompt Template

Few-shot examples from domains not covered in this thesis are used to prompt the LLM to

generate natural language descriptions of goals represented in predicate form. The template

is shown below.

1 """;;;; Translate the goal into natural language.

2

3 Q: (and (movie-rewound)

4 (counter-at-zero)

5 (have-chips)

6 (have-dip)

7 (have-pop)

8 (have-cheese)

9 (have-crackers)

10 )

11

12 A: The movie is rewound, the counter is at zero, and the agent has chips, dip, pop,

↪→ cheese, and crackers.

13

14 Q: (and (person-at person0 f5-5f))

15

16 A: person0 is at location f5-5f.

17

18 Q: (and (ontable shot15)

19 (dispenses dispenser1 ingredient1)

20 (contains shot1 cocktail5)

21 )

22

23 A: The shot15 glass is on the table, the dispenser dispenser1 is set up to dispense

↪→ ingredient1, and the shot glass shot1 contains cocktail5.

24

25 Q: (and (at bear-0 loc-4-2) (holding pawn-1) )

96



26

27 A: bear-0 is at location loc-4-2, and the agent is holding pawn-1.

28

29 Q: {our_goal}

30 A:

31 """

Task Decomposition Prompt Template

We prompt for a sequence of action predicates using few-shot examples from domains not

used in our experiments. Here is the template.

1

2 """;;;; Given natural language goals, predict a sequence of PDDL actions.

3

4 Q:

5

6 Domain: Casino

7 Goal: The agent has secured prize-1-1 and prize-1-2 from the first prize group,

↪→ prize-2-1 and prize-2-2 from the second prize group, and prize-3-1 and prize

↪→ -3-2 from the third prize group.

8 Objects: loc-3-3:location,loc-5-0:location,loc-1-6:location,loc-7-8:location,loc

↪→ -3-1:location,loc-3-9:location,loc-7-6:location,loc-2-0:location,loc-0-0:

↪→ location,loc-5-6:location,prize-2-2:prize2,loc-7-2:location,loc-1-1:location

↪→ ,loc-6-1:location,loc-6-5:location,loc-0-2:location,loc-7-3:location,loc

↪→ -3-0:location,loc-5-5:location,loc-6-8:location,loc-4-3:location,loc-3-7:

↪→ location,loc-4-0:location,prize-1-1:prize1,loc-2-2:location,loc-2-1:location

↪→ ,loc-2-5:location,loc-0-8:location,loc-5-9:location,loc-1-8:location,loc

↪→ -7-1:location,prize-3-1:prize3,loc-2-4:location,loc-2-8:location,loc-1-9:

↪→ location,loc-6-9:location,loc-5-2:location,loc-0-6:location,prize-2-1:prize2

↪→ ,loc-5-8:location,loc-2-3:location,loc-4-6:location,loc-5-3:location,loc

↪→ -2-9:location,loc-3-2:location,loc-4-8:location,loc-4-2:location,loc-6-6:

↪→ location,loc-0-7:location,loc-0-1:location,prize-1-2:prize1,loc-6-0:location

97



↪→ ,loc-4-1:location,loc-4-7:location,loc-6-2:location,loc-1-4:location,loc

↪→ -2-6:location,loc-3-4:location,loc-6-7:location,loc-0-4:location,loc-0-3:

↪→ location,loc-3-6:location,loc-3-8:location,loc-2-7:location,loc-7-0:location

↪→ ,loc-7-5:location,loc-1-2:location,loc-7-9:location,prize-3-2:prize3,loc

↪→ -5-7:location,loc-1-3:location,loc-4-9:location,loc-4-5:location,loc-1-7:

↪→ location,loc-6-4:location,loc-7-4:location,loc-1-5:location,loc-0-9:location

↪→ ,loc-5-1:location,loc-0-5:location,loc-6-3:location,loc-5-4:location,loc

↪→ -4-4:location,loc-7-7:location,loc-1-0:location,loc-3-5:location

9 State: iscasino(loc-5-4),at(loc-0-0)

10

11 A:

12

13 (moveto loc-0-0 loc-5-4),(getprize3 prize-3-2 loc-5-4),(getprize3 prize-3-1 loc

↪→ -5-4),(getprize2 prize-2-2 loc-5-4),(getprize2 prize-2-1 loc-5-4),(getprize1

↪→ prize-1-2 loc-5-4),(getprize1 prize-1-1 loc-5-4)

14

15 Q:

16

17 Domain: Elevator

18 Goal: Service has been provided to person p0.

19 Objects: f1:floor,p0:passenger,f0:floor

20 State: lift-at(f0),origin(p0,f1),above(f0,f1),destin(p0,f0)

21

22 A:

23

24 (up f0 f1),(board f1 p0),(down f1 f0),(depart f0 p0)

25

26 Q:

27

28 Domain: {domain_name}

29 {goal}

30 {state}

98



31

32 A:

33 """

Operator Definition Prompt Template

We prompt the LLM to define operators without associating them with action predicates,

using few-shot examples from domains not included in our experiments. The template is

provided below.

1 f""";;;; You are a software engineer who will be writing planning operators in the

↪→ PDDL planning language. These operators are based on the following PDDL

↪→ domain definition.

2

3 ### The predicates in Sokoban are:

4

5 (move-dir ?v0 - location ?v1 - location ?v2 - direction)

6 (is-nongoal ?v0 - location)

7 (clear ?v0 - location)

8 (is-stone ?v0 - thing)

9 (at ?v0 - thing ?v1 - location)

10 (is-player ?v0 - thing)

11 (at-goal ?v0 - thing)

12 (move ?v0 - direction)

13 (is-goal ?v0 - location)

14

15 Q: Propose a PDDL operator called "move".

16

17 A: (:action move

18 :parameters (?p - thing ?from - location ?to - location ?dir - direction)

19 :precondition (and (move ?dir)

20 (is-player ?p)

21 (at ?p ?from)

99



22 (clear ?to)

23 (move-dir ?from ?to ?dir))

24 :effect (and

25 (not (at ?p ?from))

26 (not (clear ?to))

27 (at ?p ?to)

28 (clear ?from))

29 )

30

31 Q: Propose an operator called "push-to-goal".

32 A: (:action push-to-goal

33 :parameters (?p - thing ?s - thing ?ppos - location ?from - location ?to -

↪→ location ?dir - direction)

34 :precondition (and (move ?dir)

35 (is-player ?p)

36 (is-stone ?s)

37 (at ?p ?ppos)

38 (at ?s ?from)

39 (clear ?to)

40 (move-dir ?ppos ?from ?dir)

41 (move-dir ?from ?to ?dir)

42 (is-goal ?to))

43 :effect (and

44 (not (at ?p ?ppos))

45 (not (at ?s ?from))

46 (not (clear ?to))

47 (at ?p ?from)

48 (at ?s ?to)

49 (clear ?ppos)

50 (at-goal ?s))

51 )

52

100



53 Q: Propose an operator called "push-to-nongoal".

54 A: (:action push-to-nongoal

55 :parameters (?p - thing ?s - thing ?ppos - location ?from - location ?to -

↪→ location ?dir - direction)

56 :precondition (and (move ?dir)

57 (is-player ?p)

58 (is-stone ?s)

59 (at ?p ?ppos)

60 (at ?s ?from)

61 (clear ?to)

62 (move-dir ?ppos ?from ?dir)

63 (move-dir ?from ?to ?dir)

64 (is-nongoal ?to))

65 :effect (and

66 (not (at ?p ?ppos))

67 (not (at ?s ?from))

68 (not (clear ?to))

69 (at ?p ?from)

70 (at ?s ?to)

71 (clear ?ppos)

72 (not (at-goal ?s)))

73 )

74

75

76 ### The predicates in {domain_name} are:

77

78 {predicates}

79

80 Q: Propose an operator called {op_name}.

81

82 A:

83 """

101



Skill Association Prompt Template

We prompt the LLM to associate each generated operator with an action predicate defined

in the domain, using few-shot examples from domains not included in our experiments. The

template is shown below:

1 """;;;; Given the list of skills and a PDDL operator, pick the skill that is needed

↪→ to execute the PDDL operator.

2

3 Q:

4

5 Domain: Sokoban

6 Skills: move(?v0 - direction), throw(?v0 - ball), walk(?v3 - loc), pick(?v1 -

↪→ object)

7 Operator:

8 (:action push-to-goal

9 :parameters (?p - thing ?s - thing ?ppos - location ?from - location ?to -

↪→ location ?dir - direction)

10 :precondition (and (move ?dir)

11 (is-player ?p)

12 (is-stone ?s)

13 (at ?p ?ppos)

14 (at ?s ?from)

15 (clear ?to)

16 (move-dir ?ppos ?from ?dir)

17 (move-dir ?from ?to ?dir)

18 (is-goal ?to))

19 :effect (and

20 (not (at ?p ?ppos))

21 (not (at ?s ?from))

22 (not (clear ?to))

102



23 (at ?p ?from)

24 (at ?s ?to)

25 (clear ?ppos)

26 (at-goal ?s))

27 )

28

29 A: move

30

31 Q:

32

33 Domain: Spanner

34 Skills: (walk ?v0 - location ?v1 - location ?v2 - man),(pickup_spanner ?v0 -

↪→ location ?v1 - spanner ?v2 - man),(rotate ?v0 - location ?v1 - spanner ?v2 -

↪→ man ?v3 - nut)

35 Operator:

36 (:action tighten_nut

37 :parameters (?l - location ?s - spanner ?m - man ?n - nut)

38 :precondition (and (at ?m ?l)

39 (at ?n ?l)

40 (carrying ?m ?s)

41 (useable ?s)

42 (loose ?n))

43 :effect (and (not (loose ?n))(not (useable ?s)) (tightened ?n)))

44 )

45

46 A: rotate

47

48

49 Q:

50

51 Domain: {domain_name}

52 Skills: {skills_list}

103



53 Operator:

54 {operator_string}

55

56 A:

57 """

B.2 Predicate Descriptions for Baking-Large

To prompt GPT-4 for open-loop plans, we used handcrafted natural language descriptions

of predicates and goals. This section provides the descriptions used in our experiments.

B.2.1 Grounded Literal Descriptions

Below is the mapping of each predicate name to its corresponding natural language descrip-

tion. Brackets indicate placeholders for the object names that serve as arguments for the

ground literal of the predicate.

1 {

2 "pan-is-full": "The pan {} is full and can’t contain anymore things.",

3 "cups-of-flour-is-consumed": "{} is used up. ",

4 "baking-powder-is-consumed": "{} is used up. ",

5 "mixture-has-blended-raw-egg-whites": "{} has raw egg whites that were

↪→ smoothly and uniformly mixed in. ",

6 "mixture-has-folded-raw-egg-whites": "{} has folded raw egg whites with

↪→ pockets of air in them. ",

7 "sugar-is-consumed": "{} is used up. ",

8 "butter-is-consumed": "{} is used up.",

9 "mixture-is-hypothetical": "{} is a hypothetical object that doesn’t

↪→ exist yet. ",

10 "is-whole-raw-egg": "{} is out of its shell and is a whole raw egg, with

↪→ the egg whites and yolk not separated. ",

11 "powder-ingredient-in-measuring-cup": "{} is in the measuring cup {}. ",

104



12 "butter-in-measuring-cup": "{} is in the measuring cup {}. ",

13 "dessert-is-hypothetical": "{} is a hypothetical dessert that has not

↪→ been made yet. ",

14 "egg-is-hypothetical": "{} references a hypothetical egg (partial egg or

↪→ whole) that has not been made yet. ",

15 "is-baking-powder": "{} is chemically and physically identifiable as

↪→ baking powder. ",

16 "is-raw-egg-yolk": "{} is a raw egg yolk out of the shell. ",

17 "is-raw-egg-whites": "{} is raw egg whites out of the shell. ",

18 "is-whipped-egg-whites": "{} is whipped egg whites. ",

19 "is-in-shell": "The egg {} is in its uncracked shell. ",

20 "is-egg": "The egg {} is chemically and physically still an egg, and

↪→ separable from other objects. ",

21 "mixture-is-airy": "The mixture {} is light and airy, and has air

↪→ pockets. ",

22 "pan-is-damaged": "{} is damaged. ",

23 "is-whole-egg": "The egg {} is raw and whole, containing both the yolk

↪→ and egg whites. ",

24 "is-tablespoons-of-flour": "{} is a couple of tablespoons of flour. ",

25 "is-cups-of-flour": "{} is a couple of cups of flour. ",

26 "is-sugar": "{} is chemically and physically still separate from other

↪→ objects and identifiable as sugar. ",

27 "is-butter": "{} is chemically and physically still separate from other

↪→ objects and identifiable as butter. ",

28 "oven-is-full": "{} is at capacity. ",

29 "is-pan": "The container {} is a pan. ",

30 "is-bowl": "The container {} is a bowl. ",

31 "is-mixture": "{} is not hypothetical and exists. ",

32 "is-plate": "The container {} is a plate. ",

33 "container-is-full": "The container {} is full and cannot hold any more

↪→ objects. ",

34 "powder-ingredient-in-container": "The container {} has {} in it. ",

105



35 "butter-in-container": "The container {} has {} in it. ",

36 "egg-in-container": "The container {} has {} in it. ",

37 "dessert-in-container": "The container {} has {} in it. ",

38 "mixture-in-container": "The container {} has {} in it. ",

39 "container-in-oven": "The container {} is in the oven {}. ",

40 "container-in-an-oven": "The container {} is in an oven. ",

41 "mixture-has-raw-egg-yolk": "The mixture {} contains raw egg yolk. ",

42 "mixture-has-cups-of-flour": "The mixture {} contains cups of flour. ",

43 "mixture-has-tablespoons-of-flour":"The mixture {} contains tablespoons

↪→ of flour. ",

44 "mixture-has-raw-egg-whites": "The mixture {} contains raw egg whites. "

↪→ ,

45 "mixture-has-sugar": "The mixture {} contains sugar. ",

46 "mixture-has-butter": "The mixture {} contains butter. ",

47 "mixture-has-baking-powder": "The mixture {} contains baking powder. ",

48 "is-cake": "{} is not hypothetical, and is a real, physical cake. ",

49 "is-souffle": "{} is not hypothetical, and is a light and airy souffle.

↪→ ",

50 "oven-is-heated-for-souffle": "The oven {} is preheated for a souffle. "

↪→ ,

51 "oven-is-heated-for-cake": "The oven {} is preheated for a cake. ",

52 "pour-powdery-ingredient-from-measuring-cup": "Pour the entire {} in {}

↪→ into {}. ",

53 "pour-mixture-only": "Pour the entire mixture {} from {} into {}. ",

54 "pour-powdery-ingredient-from-container": "Pour all of the {} from {}

↪→ into {}. ",

55 "transfer-butter-from-pan-or-bowl": "Move all of the butter {} from

↪→ container {} into container {}. ",

56 "transfer-egg-from-pan-or-bowl": "Move the egg object {} from container

↪→ {} into container {}. ",

57 "move-baked-good-in-container-to-different-container": "Move the dessert

↪→ from {} into {}. ",

106



58 "crack-egg-and-put-in-container": "Crack the egg {} into {} and discard

↪→ the eggshell. ",

59 "put-butter-in-container-from-measuring-cup": "Put the butter {} in the

↪→ measuring cup into {}. ",

60 "put-pan-in-oven": "Put the {} on the kitchen counter in the {}. ",

61 "preheat-oven-with-cake-settings": "Close the oven door if it’s open,

↪→ and preheat the oven {} at 350 degrees Fahrenheit, the

↪→ temperature at which to bake cakes. ",

62 "preheat-oven-with-souffle-settings": "Close the oven door if it’s open,

↪→ and preheat the oven {} at 375 degrees Fahrenheit, the

↪→ temperature at which to bake souffles. ",

63 "use-stand-mixer": "Mix the ingredients in {} with the mixer {} to

↪→ create a new mixture {} with all the ingredients fused together.

↪→ ",

64 number "remove-pan-from-oven": "Remove the pan {} from the oven it is in and place

↪→ it on the counter to cool, leaving the oven door open. ",

65 "set-oven-with-cake-bake-time-and-press-start": "Set the amount of time

↪→ to bake a cake and press ’start’ on {} to begin baking, not

↪→ opening the oven again until done baking. ",

66 "set-oven-with-souffle-bake-time-and-press-start": "Set the amount of

↪→ time to bake a souffle and press ’start’ on {} to begin baking,

↪→ not opening the oven again until done baking. ",

67 "separate-raw-yolk-from-egg-whites": "Separate the raw egg {} that is

↪→ out of its shell into an egg yolk, now called {} and in the

↪→ container {}, and egg whites called {} and in the container {}. "

↪→ ,

68 "beat-egg-whites": "Beat the egg {} with the mixer {} in the {}. ",

69 "fold-stiff-egg-whites-into-mixture": "Fold the egg whites {} in {} into

↪→ the contents of {}, using the {}. "

70 }

107



B.2.2 Action Predicate Descriptions

Below is the mapping of each action predicate name to its corresponding description.

1 {

2 "pour-powdery-ingredient-from-measuring-cup": "Pour all of a powdery

↪→ ingredient in a measuring cup into a container.",

3 "pour-mixture-only": "Pour the entire mixture that is inside a container

↪→ into another container.",

4 "pour-powdery-ingredient-from-container": "Pour all of the powdery

↪→ ingredient inside a container into another container.",

5 "transfer-butter-from-pan-or-bowl": "Move all of the butter from a

↪→ container into another container.",

6 "transfer-egg-from-pan-or-bowl": "Move the egg object from a container into

↪→ another container.",

7 "move-baked-good-in-container-to-different-container": "Move a dessert from

↪→ a container into another container.",

8 "crack-egg-and-put-in-container": "Crack a raw egg into a container and

↪→ discard its eggshell.",

9 "put-butter-in-container-from-measuring-cup": "Put all of the butter in the

↪→ measuring cup into the container.",

10 "put-pan-in-oven": "Open the oven door, put the pan in the oven, and close

↪→ the oven door.",

11 "preheat-oven-with-cake-settings": "Close the oven door if it’s open, and

↪→ preheat the oven at 350 degrees Fahrenheit, the temperature at which

↪→ to bake cakes.",

12 "preheat-oven-with-souffle-settings": "Close the oven door if it’s open,

↪→ and preheat the oven at 375 degrees Fahrenheit, the temperature at

↪→ which to bake souffles.",

13 "use-stand-mixer": "Mix the ingredients in the container to create a smooth

↪→ mixture, so that the ingredients in the container are no longer

↪→ separable.",

14 "remove-pan-from-oven": "Open the oven door, remove a pan from the oven it

108



↪→ is in and place it on the counter to cool, leaving the oven door open

↪→ .",

15 "set-oven-with-cake-bake-time-and-press-start": "Set the amount of time to

↪→ bake a cake and press ’start’ on the oven to begin baking, not

↪→ opening the oven again until done baking.",

16 "set-oven-with-souffle-bake-time-and-press-start": "Set the amount of time

↪→ to bake a souffle and press ’start’ on the oven to begin baking, not

↪→ opening the oven again until done baking.",

17 "separate-raw-yolk-from-egg-whites": "Separate a raw egg that is out of its

↪→ shell into an egg yolk and egg whites and place them in containers."

↪→ ,

18 "beat-egg-whites": "Beat the egg whites in the container with the electric

↪→ mixer until stiff peaks form.",

19 "fold-stiff-egg-whites-into-mixture": "Fold the egg whites in the container

↪→ into the mixture in the container, using the spatula."

20 }

B.2.3 Lifted Action Literal Variable Descriptions

We provide hand-written descriptions of each variable in the lifted action literal in Baking-

Large. Below is a map from the action name to a list of descriptions for each of the variables.

1 {

2 "pour-powdery-ingredient-from-measuring-cup": [

3 "the powdery ingredient to be transfered between the measuring cup

↪→ and the container",

4 "the measuring cup containing the powdery ingredient",

5 "the container that will contain the powdery ingredient after

↪→ pouring"

6 ],

7 "pour-mixture-only": [

8 "the container that has the mixture right now",

109



9 "the container to pour the mixture into",

10 "the mixture to be poured between the containers"

11 ],

12 "pour-powdery-ingredient-from-container": [

13 "the container that has the powdery ingredient right now",

14 "the container to pour the powdery ingredient into",

15 "the powdery ingredient to be poured between the containers"

16 ],

17 "transfer-butter-from-pan-or-bowl": [

18 "the container that the butter is in right now",

19 "the container to put the butter in",

20 "the butter that will be moved"

21 ],

22 "transfer-egg-from-pan-or-bowl": [

23 "the container that the egg is in right now",

24 "the container to put the egg in",

25 "the egg that will be moved"

26 ],

27 "move-baked-good-in-container-to-different-container": [

28 "the container that the dessert is in right now",

29 "the container to put the dessert in",

30 "the dessert that will be moved"

31 ],

32 "crack-egg-and-put-in-container": [

33 "the egg that is to be cracked",

34 "the container that will hold the whole raw egg after cracking it

↪→ out of its shell"

35 ],

36 "put-butter-in-container-from-measuring-cup": [

37 "the butter that is in the measuring cup currently",

38 "the container that the butter will be in after moving it from the

↪→ measuring cup"

110



39 ],

40 "put-pan-in-oven": [

41 "the pan that is to be moved",

42 "the oven that the container will be in after moving"

43 ],

44 "preheat-oven-with-cake-settings": [

45 "the oven to preheat"

46 ],

47 "preheat-oven-with-souffle-settings": [

48 "the oven to preheat"

49 ],

50 "use-stand-mixer": [

51 "the mixer to use",

52 "the container containing ingredients to mix",

53 "the name of the new mixture that didn’t exist before"

54 ],

55 "remove-pan-from-oven": [

56 "the container to remove from the oven",

57 "the oven that the container is in"

58 ],

59 "set-oven-with-cake-bake-time-and-press-start": [

60 "the oven to start baking in",

61 "the name of the dessert object that will become a physical cake",

62 "the cake mixture that we are baking"

63 ],

64 "set-oven-with-souffle-bake-time-and-press-start": [

65 "the oven to start baking in",

66 "the name of the dessert object that will become a physical souffle"

↪→ ,

67 "the souffle mixture that we are baking"

68 ],

69 "separate-raw-yolk-from-egg-whites": [

111



70 "the name of the whole raw egg to do the separation on, whose name

↪→ will represent the egg yolk after separation",

71 "the hypothetical egg object that will represent the egg whites

↪→ after separation",

72 "the name of the container that will contain the raw egg yolk after

↪→ separation",

73 "the name of the container that will contain the raw egg whites

↪→ after separation"

74 ],

75 "beat-egg-whites": [

76 "the electric stand mixer to use to beat the egg whites",

77 "the container holding the egg whites",

78 "the egg whites"

79 ],

80 "fold-stiff-egg-whites-into-mixture": [

81 "the spatula to use for folding the egg whites",

82 "the container containing the stiff egg whites",

83 "the container containing the mixture",

84 "the stiff, beaten egg whites",

85 "the mixture to fold the egg whites into"

86 ]

87 }

B.2.4 Goal Descriptions

We provide hand-written natural language descriptions for goals. Below is the mapping of

each training problem to its corresponding goal description:

1 {

2 "problem1": "dessert-0 is not hypothetical, and is a real, physical cake

↪→ .\npan-0 is not damaged.",

3 "problem2": "dessert-0 is not hypothetical, and is a sweet, light, and

112



↪→ airy souffle that is not cake-like.\npan-0 is not damaged.\npan-1

↪→ is not damaged.",

4 "problem3": "dessert-0 is not hypothetical, and is a real, physical cake

↪→ .\nThe container plate-0 has dessert-0 in it.",

5 "problem4": "dessert-0 is not hypothetical, and is a real, physical cake

↪→ .\ndessert-1 is not hypothetical, and is a sweet, light, and airy

↪→ souffle that is not cake-like."

6 }

B.3 Prompt Templates for Generating Plan Sketches Open-

Loop in Baking-Large

To generate plan sketches in Baking-Large, we initiate a new conversation with the LLM

using four user prompts:

1. Domain Introduction: The first prompt introduces the domain and asks the LLM

to role-play as the agent.

2. Initial State Introduction: The second prompt describes the initial state of the

agent.

3. Goal Introduction: The third prompt specifies the goal for the agent.

4. Action Sequence Request: The fourth prompt asks the LLM to generate the se-

quence of actions needed to achieve the goal.

The response from GPT-4 to each prompt is appended to the conversation context.

Introduction Prompt

1 f"""

2 You are a household robot in a kitchen. You are in front of the kitchen counter,

↪→ where there are some prepared ingredients.

113



3

4 More specifically, you will be given a set of facts that are currently true in the

↪→ world, and a set of facts that is your goal to make true in the world. With

↪→ my step-by-step guidance, you will think through how to act to achieve the

↪→ goal.

5

6 Since you are baking desserts, first determine what are the differences between a

↪→ cake and sweet, light, and airy souffle. Please rationalize what are the

↪→ essential ingredients and their amounts to make those desserts and use only

↪→ those.

7 """

Initial State Introduction Prompt Template

The initial state description is a formatted string created by combining the predicate de-

scriptions from Section B.2. This description is used to populate the following template,

forming our prompt.

1 f"""

2 In the kitchen, there different kinds of objects that you can interact with. The

↪→ different kind of objects that you see are categorized into the following:

3

4 container

5 measuring cup

6 dessert

7 powder

8 butter

9 mixture

10 egg

11 oven

12 spatula

13 electric stand mixer

14

114



15 Right now, you see the some of these ingredients and items on the counter. You also

↪→ see some appliances in the kitchen. The following things are true at this

↪→ moment:

16

17 {initial_state_description}

18

19 As a reminder, in the kitchen, the pans, measuring cups, and bowls are on the

↪→ counter, and the oven(s) is (are) behind the counter. If you are baking

↪→ desserts, please rationalize what are the essential ingredients and their

↪→ amounts to make those desserts and use only those. Once an ingredient is

↪→ used once, it can’t be reused.

20

21 You should have all of the ingredients that you need on the counter prepared for

↪→ you. I’ll let you know what desserts you will make shortly.

22 """

Goal Introduction Prompt Template

We fill in this prompt template with a goal description from Section B.2.4 to form our

prompt.

1 f"""These are the things that you would like to become true:

2 {goal_state_description}

3

4 This state is your goal. Don’t give a plan yet.

5

6 Please make sure that each dessert you make has enough ingredients allocated to it.

↪→ You cannot allocate hypothetical ingredients because they don’t exist. If

↪→ making multiple desserts, please make sure that you don’t allocate the same

↪→ ingredients between desserts. If you are strained to get enough ingredients

↪→ for all the desserts you are making, it’s okay to use less of certain

↪→ ingredients. As long as each dessert has all the necessary ingredient types,

↪→ it will be fine.

115



7 """

Action Sequence Request Prompt Template

We use the handwritten action predicate descriptions from Section B.2.2 to construct a string

containing all the action descriptions. This string is then used to populate the below prompt

template, forming the input for generating the plan sketch.

1 f"""

2 These are the names of the atomic actions that we can perform, along with their

↪→ descriptions:

3 {lifted_actions_descriptions_string}

4

5 Can you please give a sequence of these phrases that will get us to the goal?

↪→ Format it using a numbered list with one line per step, starting with "1.".

↪→ Give a little explanation of each step underneath each bullet point. Mark

↪→ the end of the plan with ’***’ in your response.

6 """

B.4 Prompt Templates for Grounding Plans

Using the sequence of action predicate names provided by the LLM, we generated the

grounded plan using the following prompt templates.

To ground the actions sequentially according to the action names (plan sketch) from

the LLM, we prompted step-by-step, appending each response to the ongoing conversation.

Grounding begins with the first action using this prompt:

1 f"""So far in our plan, we’ve already done:

2

3 {actions_done_string}

4

5 Okay, now, we are thinking about step {len(actions_list) + 1} in our plan sketch.

↪→ We are going to do the following action: {

116



↪→ action_description_with_nonspecific_articles}. We need to identify the names

↪→ of the specific objects involved in this action. Here are more details

↪→ about how the objects involved need to relate to the action:

6

7 """ + ’\n’.join(variable_description_list)

In this prompt, the following components are used:

• actions_done_string: Contains the ground literal descriptions (from Section B.2)

of actions earlier in the plan that the LLM has already grounded.

• actions_list: The list of parsed ground actions that have been accumulating.

• action_description_with_nonspecific_articles: The action description from Sec-

tion B.2.2.

• variable_description_list: The list of variable descriptions for the action, retrieved

from Section B.2.3.

We then prompt the LLM to assign each variable in the lifted action literal to a specific

object in the state:

1 f"""We are going to {action_description_with_nonspecific_articles}. Given knowledge

↪→ of the current state and our planned actions, which of the following

↪→ objects fits the description, {variable_description}?

2 """ + ’\n’.join(objects_list) + ’\n’ + ’Please explain your answer, and then answer

↪→ with the object name on the last line after "Answer:".’

In this prompt:

• action_description_with_nonspecific_articles: This is the same action de-

scription used in the previous prompt.

• variable_description: The description of the specific variable being grounded, corre-

sponding to the current iteration over the variable_description_list from the previous

prompt.

117



• objects_list: The list of object names observed in the current state.

We parse the LLM’s response and add the grounded action literal to our plan. This

process is repeated for all actions in the plan sketch provided by the LLM. Once all actions

are grounded, the complete grounded plan is returned for execution to gather demonstrations.

118



References

[1] A. Ahmetoglu, M. Y. Seker, J. Piater, E. Oztop, and E. Ugur. “Deepsym: Deep sym-

bol generation and rule learning from unsupervised continuous robot interaction for

planning”. In: arXiv preprint arXiv:2012.02532 (2020).

[2] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup. “A survey of explo-

ration methods in reinforcement learning”. In: arXiv preprint arXiv:2109.00157 (2021).

url: https://arxiv.org/pdf/2109.00157.pdf.

[3] A. Arora, H. Fiorino, D. Pellier, M. Métivier, and S. Pesty. “A review of learning

planning action models”. In: The Knowledge Engineering Review (2018).

[4] M. Asai and A. Fukunaga. “Classical Planning in Deep Latent Space: Bridging the

Subsymbolic-Symbolic Boundary”. In: Proceedings of the Thirty-Second AAAI Confer-

ence on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artifi-

cial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in

Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.

Ed. by S. A. McIlraith and K. Q. Weinberger. AAAI Press, 2018, pp. 6094–6101. url:

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16302.

[5] R. I. Brafman and M. Tennenholtz. “R-max - a general polynomial time algorithm for

near-optimal reinforcement learning”. In: J. Mach. Learn. Res. 3.null (2003). issn:

1532-4435. doi: 10 . 1162 / 153244303765208377. url: https : / / doi . org / 10 . 1162 /

153244303765208377.

[6] R. Chitnis, T. Silver, J. B. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez. “GLIB:

Exploration via Goal-Literal Babbling for Lifted Operator Learning”. In: CoRR abs/2001.08299

(2020). arXiv: 2001.08299. url: https://arxiv.org/abs/2001.08299.

119

https://arxiv.org/pdf/2109.00157.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16302
https://doi.org/10.1162/153244303765208377
https://doi.org/10.1162/153244303765208377
https://doi.org/10.1162/153244303765208377
https://arxiv.org/abs/2001.08299
https://arxiv.org/abs/2001.08299


[7] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. “Learning

Neuro-Symbolic Relational Transition Models for Bilevel Planning”. In: AAAI CLeaR

Workshop. 2022.

[8] C. Colas, P. Fournier, M. Chetouani, O. Sigaud, and P.-Y. Oudeyer. “Curious: intrin-

sically motivated modular multi-goal reinforcement learning”. In: International Con-

ference on Machine Learning (ICML). 2019. url: https://proceedings.mlr.press/v97/

colas19a/colas19a.pdf.

[9] K. Driessens and S. Džeroski. “Integrating Guidance into Relational Reinforcement

Learning”. In: Mach. Learn. 57.3 (Dec. 2004), pp. 271–304. issn: 0885-6125. doi: 10.

1023/B:MACH.0000039779 .47329 .3a. url: https ://doi .org/10 .1023/B:MACH.

0000039779.47329.3a.

[10] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas.

Guiding Pretraining in Reinforcement Learning with Large Language Models. 2023.

arXiv: 2302.06692 [cs.LG]. url: https://arxiv.org/abs/2302.06692.

[11] M. Helmert. “The Fast Downward Planning System”. In: CoRR abs/1109.6051 (2011).

arXiv: 1109.6051. url: http://arxiv.org/abs/1109.6051.

[12] S. James, B. Rosman, and G. Konidaris. “Autonomous learning of object-centric ab-

stractions for high-level planning”. In: Proceedings of the The Tenth International Con-

ference on Learning Representations. 2022.

[13] L. Kaelbling, H. Pasula, and L. Zettlemoyer. “Learning Symbolic Models of Stochastic

Domains”. In: Journal of Artificial Intelligence Research 29 (Oct. 2011). doi: 10.1613/

jair.2113.

[14] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M. Verma, S. Bhambri, L.

Saldyt, and A. Murthy. “LLMs Can’t Plan, But Can Help Planning in LLM-Modulo

Frameworks”. In: arXiv preprint. 2024. url: https://arxiv.org/pdf/2402.01817.

[15] M. Kearns and S. Singh. “Near-optimal reinforcement learning in polynomial time”.

In: Machine learning 49 (2002), pp. 209–232.

120

https://proceedings.mlr.press/v97/colas19a/colas19a.pdf
https://proceedings.mlr.press/v97/colas19a/colas19a.pdf
https://doi.org/10.1023/B:MACH.0000039779.47329.3a
https://doi.org/10.1023/B:MACH.0000039779.47329.3a
https://doi.org/10.1023/B:MACH.0000039779.47329.3a
https://doi.org/10.1023/B:MACH.0000039779.47329.3a
https://arxiv.org/abs/2302.06692
https://arxiv.org/abs/2302.06692
https://arxiv.org/abs/1109.6051
http://arxiv.org/abs/1109.6051
https://doi.org/10.1613/jair.2113
https://doi.org/10.1613/jair.2113
https://arxiv.org/pdf/2402.01817


[16] G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez. “From skills to symbols: Learning

symbolic representations for abstract high-level planning”. In: Journal of Artificial

Intelligence Research (2018). url: https :// jair .org/ index .php/jair/article/view/

11175/26380.

[17] N. Kumar, W. McClinton, R. Chitnis, T. Silver, T. Lozano-Pérez, and L. P. Kael-

bling. “Learning Efficient Abstract Planning Models that Choose What to Predict”.

In: Conference on Robot Learning (CoRL). 2023. url: https://openreview.net/pdf?

id=_gZLyRGGuo.

[18] N. Kumar, T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-Pérez, L. P. Kael-

bling, and J. Barry. Practice Makes Perfect: Planning to Learn Skill Parameter Poli-

cies. 2024. arXiv: 2402.15025 [cs.RO]. url: https://arxiv.org/abs/2402.15025.

[19] P. Ladosz, L. Weng, M. Kim, and H. Oh. “Exploration in deep reinforcement learning:

A survey”. In: Information Fusion 85 (2022), pp. 1–22. issn: 1566-2535. doi: https:

//doi.org/10.1016/j.inffus.2022.03.003. url: https://www.sciencedirect.com/science/

article/pii/S1566253522000288.

[20] T. Lang, M. Toussaint, and K. Kersting. “Exploration in relational domains for model-

based reinforcement learning”. In: The Journal of Machine Learning Research 13.1

(2012), pp. 3725–3768.

[21] A. Li, N. Kumar, T. Lozano-Pérez, and L. Kaelbling. Learning to Bridge the Gap:

Efficient Novelty Recovery with Planning and Reinforcement Learning. 2024. arXiv:

2409.19226 [cs.RO]. url: https://arxiv.org/abs/2409.19226.

[22] R. Ma, J. Luijkx, Z. Ajanovic, and J. Kober. “ExploRLLM: Guiding Exploration in Re-

inforcement Learning with Large Language Models”. In: arXiv preprint arXiv:2403.09583

(2024).

[23] D. Martínez, G. Alenyà, and C. Torras. “Relational reinforcement learning with guided

demonstrations”. In: Artificial Intelligence 247 (2017). Special Issue on AI and Robotics,

pp. 295–312. issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.2015.02.006. url:

https://www.sciencedirect.com/science/article/pii/S0004370215000284.

121

https://jair.org/index.php/jair/article/view/11175/26380
https://jair.org/index.php/jair/article/view/11175/26380
https://openreview.net/pdf?id=_gZLyRGGuo
https://openreview.net/pdf?id=_gZLyRGGuo
https://arxiv.org/abs/2402.15025
https://arxiv.org/abs/2402.15025
https://doi.org/https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/https://doi.org/10.1016/j.inffus.2022.03.003
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://arxiv.org/abs/2409.19226
https://arxiv.org/abs/2409.19226
https://doi.org/https://doi.org/10.1016/j.artint.2015.02.006
https://www.sciencedirect.com/science/article/pii/S0004370215000284


[24] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and

Achieving Goals via World Models. 2021.

[25] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. “Overcoming ex-

ploration in reinforcement learning with demonstrations”. In: 2018 IEEE international

conference on robotics and automation (ICRA). IEEE. 2018, pp. 6292–6299.

[26] J. H. A. Ng and R. P. Petrick. “Incremental Learning of Planning Actions in Model-

Based Reinforcement Learning.” In: IJCAI. 2019.

[27] A. Nie, Y. Su, B. Chang, J. N. Lee, E. H. Chi, Q. V. Le, and M. Chen. EVOLvE:

Evaluating and Optimizing LLMs For Exploration. 2024. arXiv: 2410.06238 [cs.LG].

url: https://arxiv.org/abs/2410.06238.

[28] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL]. url: https:

//arxiv.org/abs/2303.08774.

[29] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. “Curiosity-driven exploration by

self-supervised prediction”. In: International conference on machine learning. PMLR.

2017, pp. 2778–2787.

[30] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim. Demonstration-Guided Reinforcement Learn-

ing with Learned Skills. 2021. arXiv: 2107.10253 [cs.LG]. url: https://arxiv.org/abs/

2107.10253.

[31] C. Rodrigues, P. Gérard, C. Rouveirol, and H. Soldano. “Incremental learning of re-

lational action rules”. In: 2010 Ninth International Conference on Machine Learning

and Applications. IEEE. 2010.

[32] L. D. R. Sašo Džeroski and K. Driessens. “Relational Reinforcement Learning”. In:

Machine Learning (2001).

[33] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. “Planning to

Explore via Self-Supervised World Models”. In: CoRR abs/2005.05960 (2020). arXiv:

2005.05960. url: https://arxiv.org/abs/2005.05960.

[34] T. Silver and R. Chitnis. PDDLGym: Gym Environments from PDDL Problems. 2020.

arXiv: 2002.06432 [cs.AI]. url: https://arxiv.org/abs/2002.06432.

122

https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2107.10253
https://arxiv.org/abs/2107.10253
https://arxiv.org/abs/2107.10253
https://arxiv.org/abs/2005.05960
https://arxiv.org/abs/2005.05960
https://arxiv.org/abs/2002.06432
https://arxiv.org/abs/2002.06432


[35] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. Kaelbling, and

J. B. Tenenbaum. “Predicate invention for bilevel planning”. In: Proceedings of the

AAAI Conference on Artificial Intelligence (AAAI). 2023. url: https://ojs.aaai.org/

index.php/AAAI/article/view/26429/26201.

[36] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez. “Learn-

ing Symbolic Operators for Task and Motion Planning”. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 2021. url: https://arxiv.org/

pdf/2103.00589.pdf.

[37] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T. Lozano-Pérez, and L. P.

Kaelbling. “PDDL Planning with Pretrained Large Language Models”. In: NeurIPS

2022 Foundation Models for Decision Making Workshop. 2022. url: https://openreview.

net/forum?id=1QMMUB4zfl.

[38] R. S. Sutton. “Dyna, an integrated architecture for learning, planning, and reacting”.

In: SIGART Bull. 2.4 (1991). issn: 0163-5719. doi: 10 .1145/122344 .122377. url:

https://doi.org/10.1145/122344.122377.

[39] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati. “Large language models

still can’t plan (a benchmark for LLMs on planning and reasoning about change)”. In:

NeurIPS 2022 Foundation Models for Decision Making Workshop. 2022. url: https:

//openreview.net/pdf?id=wUU-7XTL5XO.

[40] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T.

Lampe, and M. Riedmiller. “Leveraging demonstrations for deep reinforcement learning

on robotics problems with sparse rewards”. In: arXiv preprint arXiv:1707.08817 (2017).

[41] L. Wong, J. Mao, P. Sharma, Z. S. Siegel, J. Feng, N. Korneev, J. B. Tenenbaum, and J.

Andreas. Learning adaptive planning representations with natural language guidance.

2023. arXiv: 2312.08566 [cs.AI]. url: https://arxiv.org/abs/2312.08566.

123

https://ojs.aaai.org/index.php/AAAI/article/view/26429/26201
https://ojs.aaai.org/index.php/AAAI/article/view/26429/26201
https://arxiv.org/pdf/2103.00589.pdf
https://arxiv.org/pdf/2103.00589.pdf
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://openreview.net/pdf?id=wUU-7XTL5XO
https://openreview.net/pdf?id=wUU-7XTL5XO
https://arxiv.org/abs/2312.08566
https://arxiv.org/abs/2312.08566

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Problem Setting
	2.1 Environments
	2.2 Tasks
	2.3 Model: PDDL Operators With Actions
	2.4 PDDLGym Environments
	2.5 Our Large-Scale Domain: Baking-Large

	3 Related Work
	4 Insights From Goal-Literal Babbling Exploration
	4.1 How GLIB Works
	4.1.1 GLIB Relies on Random Actions

	4.2 GLIB’s Reliance on Random Actions Inspired Demonstrations
	4.3 GLIB’s Failed Plan Executions Inspired Precondition Targeting
	4.4 GLIB’s Goal Sampling Inspired Curricula in Our Algorithm
	4.5 Why GLIB Is Effective: Working Hypotheses
	4.5.1 What Are Useful Transitions to Collect for Learning?


	5 Our Algorithm For Exploration in Relational Domains
	5.1 Overview
	5.2 Initialization: Lines 2-9
	5.3 Training Loop: Lines 10-44
	5.3.1 Automatic Action Selection
	5.3.2 Detecting When to Request the Teacher to Intervene
	5.3.3 Updating the Learned Model

	5.4 How to Select Curricula and Demonstrations
	5.4.1 Selecting curriculum to correct weak preconditions
	5.4.2 Selecting demonstrations

	5.5 Summary

	6 Results
	6.1 Exploration Methods Evaluated
	6.2 Results on Long-Horizon Test Planning Problems
	6.2.1 Analysis of Baseline Method Failures

	6.3 Data Efficiency

	7 Future Work
	7.1 Integrating GLIB With Operators From GPT-4
	7.2 Planning Open-Loop with GPT-4
	7.3 Takeaways and Future Work

	8 Conclusion
	A Domains
	A.1 Baking-Small
	A.1.1 Predicates
	A.1.2 Operators
	A.1.3 Largest Set of Objects in a Problem

	A.2 Blocks
	A.2.1 Predicates
	A.2.2 Operators
	A.2.3 Largest Set of Objects in a Problem

	A.3 Doors
	A.3.1 Predicates
	A.3.2 Operators
	A.3.3 Largest Set of Objects in a Problem

	A.4 Minecraft
	A.4.1 Predicates
	A.4.2 Operators
	A.4.3 Largest Set of Objects in a Problem

	A.5 Baking-Large
	A.5.1 Predicates
	A.5.2 Operators
	A.5.3 Largest Set of Objects in a Problem


	B Prompt Templates
	B.1 Prompt Templates for Generating Operators
	B.1.1 Few-Shot Chain-of-Thought Prompt Template

	B.2 Predicate Descriptions for Baking-Large
	B.2.1 Grounded Literal Descriptions
	B.2.2 Action Predicate Descriptions
	B.2.3 Lifted Action Literal Variable Descriptions
	B.2.4 Goal Descriptions

	B.3 Prompt Templates for Generating Plan Sketches Open-Loop in Baking-Large
	B.4 Prompt Templates for Grounding Plans

	References

